The Energetic Particle Detector (EPD) Electron-Proton Telescope (EPT) on Solar Orbiter: First Data

Alexander Kollhoff1, Daniel Pacheco1, Robert F. Wimmer-Schweingruber1, Johan von Forstner1, Lars Berger1, Sandra Eldrum1, Zigong Xu1, Bernd Heber1, Javier Rodriguez-Pacheco2, George Ho3, and the EPD team*

1Christian-Albrechts-Universität zu Kiel, Germany
2University of Alcalá, Spain
3Johns Hopkins University Applied Physics Laboratory, United States of America
* A full list of authors appears at the end of the abstract

Solar Orbiter’s Energetic Particle Detector (EPD) was commissioned in early 2020 and has since been returning data from the inner heliosphere. Despite the low activity in the current deep and extended solar minimum, EPD has observed a number of solar particle events and numerous other enhancements of energetic particles. As one of the four complementary EPD sensors, the Electron-Proton Telescope (EPT) covers the gap between the high and low particle-energy measurements of HET and STEP. With four double-ended telescopes, EPT is capable of measuring electrons and ions in an energy range of 35-400keV and 45-7000keV respectively, while providing anisotropy information from four different viewing directions.

We will present a first overview of EPT measurements, exhibiting some of the EPT data products which are made available by the European Space Agency (ESA).

In order to provide the community a deep insight into the data, we will go through different aspects of the measurements, including the current status of the intercalibration with the other EPD instruments.
