

EGU21-15390

https://doi.org/10.5194/egusphere-egu21-15390 EGU General Assembly 2021 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

The prevalence of meteoric-sulphuric particles within the stratospheric aerosol layer

Graham Mann¹, James Brooke², Kamalika Sengupta¹, Lauren Marshall³, Sandip Dhomse^{1,4}, Wuhu Feng^{1,5}, Ken Carslaw¹, Charles Bardeen⁶, Nicolas Bellouin⁷, Mohit Dalvi⁸, Colin Johnson^{8,5}, Luke Abraham^{3,9}, Samuel Remy¹⁰, Vincent Huijnen¹¹, Simon Chabrillat¹², Zak Kipling¹³, Terry Deshler¹⁴, and Larry Thomason¹⁵

¹University of Leeds, Institute for Climate and Atmospheric Science, School of Earth and Environment, LEEDS, United Kingdom of Great Britain – England, Scotland, Wales (gmann@env.leeds.ac.uk)

²University of Leeds, School of Chemistry, LEEDS, United Kingdom of Great Britain - England, Scotland, Wales (J.M.C.Plane@leeds.ac.uk)

³University of Cambridge, Department of Chemistry, Cambridge, United Kingdom of Great Britain - England, Scotland, Wales (Irm49@cam.ac.uk)

⁴National Centre for Earth Observation, University of Leeds, Leeds, United Kingdom of Great Britain - England, Scotland, Wales (S.S.Dhomse@leeds.ac.uk)

⁵National Centre for Atmospheric Science -- Climate, University of Leeds, Leeds, United Kingdom of Great Britain - England, Scotland, Wales (W.Feng@leeds.ac.uk)

⁶National Center for Atmospheric Research, Boulder, CO, United States (bardeenc@ucar.edu)

⁷University of Reading, Dept of Meteorology, Reading, United Kingdom of Great Britain - England, Scotland, Wales (n.bellouin@reading.ac.uk)

⁸UK Meteorological Office, Exeter, United Kingdom of Great Britain - England, Scotland, Wales (Colin.johnson@metoffice.gov.uk)

⁹National Centre for Atmospheric Science -- Climate, University of Cambridge, Cambridge, United Kingdom of Great Britain - England, Scotland, Wales (Luke.Abraham@atm.ch.cam.ac.uk)

¹⁰HYGEOS research consultancy, Lille, France (sr@hygeos.com)

¹¹Royal Netherlands Meteorological Institute, De Bilt, Netherlands (Vincent.Huijnen@knmi.nl)

¹²Royal Belgian Institute for Space Aeronomy, Brussels, Belgium (Simon.Chabrillat@aeronomie.be)

¹³European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom (Zak.kipling@ecmwf.int)

¹⁴University of Wyoming, Laramie, WY, United States (deshler@uwyo.edu)

¹⁵NASA Langley Research Center, Hampton, VA, United States (L.W.Thomason@nasa.gov)

The widespread presence of meteoric smoke particles (MSPs) within a distinct class of stratospheric aerosol particles has become clear from in-situ measurements in the Arctic, Antarctic and at mid-latitudes.

We apply an adapted version of the interactive stratosphere aerosol configuration of the composition-climate model UM-UKCA, to predict the global distribution of meteoric-sulphuric particles nucleated heterogeneously on MSP cores. We compare the UM-UKCA results to new MSP-sulphuric simulations with the European stratosphere-troposphere chemistry-aerosol modelling system IFS-CB05-BASCOE-GLOMAP.

The simulations show a strong seasonal cycle in meteoric-sulphuric particle abundance results from the winter-time source of MSPs transported down into the stratosphere in the polar vortex. Coagulation during downward transport sees high latitude MSP concentrations reduce from \sim 500 per cm3 at 40km to \sim 20 per cm3 at 25km, the uppermost extent of the stratospheric aerosol particle layer (the Junge layer).

Once within the Junge layer's supersaturated environment, meteoric-sulphuric particles form readily on the MSP cores, growing to 50-70nm dry-diameter (Dp) at 20-25km. Further inter-particle coagulation between these non-volatile particles reduces their number to 1-5 per cc at 15-20km, particle sizes there larger, at Dp ~ 100 nm.

The model predicts meteoric-sulphurics in high-latitude winter comprise >90% of Dp>10nm particles above 25km, reducing to $\sim40\%$ at 20km, and $\sim10\%$ at 15km.

These non-volatile particle fractions are slightly less than measured from high-altitude aircraft in the lowermost Arctic stratosphere (Curtius et al., 2005; Weigel et al., 2014), and consistent with mid-latitude aircraft measurements of lower stratospheric aerosol composition (Murphy et al., 1998), total particle concentrations also matching in-situ balloon measurements from Wyoming (Campbell and Deshler, 2014).

The MSP-sulphuric interactions also improve agreement with SAGE-II observed stratospheric aerosol extinction in the quiescent 1998-2002 period.

Simulations with a factor-8-elevated MSP input form more Dp>10nm meteoric-sulphurics, but the increased number sees fewer growing to Dp ~100nm, the increased MSPs reducing the stratospheric aerosol layer's light extinction.