Multi-sensor approach towards understanding debris-flow activity in the Lattenbach catchment, Austria

Philipp Aigner1, Erik Kuschel2, Christian Zangerl2, Johannes Hübl1, Markus Hrachowitz3, Leonard Sklar4, and Roland Kaitna1

1BOKU, Institute of Mountain Risk Engineering, Dept. of Civil Engineering and Natural Hazards, Vienna, Austria
2BOKU, Institute of Applied Geology, Dept. of Civil Engineering and Natural Hazards, Vienna, Austria
3Delft University of Technology, Civil Engineering and Geosciences, Water Resources Section, Delft, The Netherlands
4Concordia University, Dept. of Geography, Planning and Environment, Montreal, Canada

Debris flows (DFs) pose a severe risk to Alpine communities and infrastructure. The Lattenbach catchment (basin area 5.3 km², relief 2134 m) in Tyrol, Austria, is an example for an active DF-site with several DFs occurring per year. To improve our understanding of the DF-process cascade in this catchment, we raise the questions: where does the sediment originate, are hillslope processes the drivers for DF-activity, and how is the relationship of rainfall amount and DF-magnitude?

We employ an approach that makes use of the data richness of this study site: High resolution ALS and TLS terrain models and aerial photographs are considered to locate significant elevation differences. Furthermore, we performed an in-detail UAV-based surveying campaign of the active channel reaches for the 2019 and 2020 DF-season. Additionally, we use datasets captured by a DF monitoring station (discharge, volume, timing, precipitation) at the catchment outlet to assess triggering rainfall as well as DF-frequency and magnitudes.

We find that in the last fifteen years up to three events occurred annually. A single location, where all DFs originate from, is not detectable, indicating a variety of sediment sources is relevant for DF-initiation, including bank failures and channel incision, partly driven by deep-seated landslides that continuously feed the channel with sediment. Between the years 2005 and 2018 the DF-volumes recorded at the catchment outlet varied between about 5,000 m³ (small) and 46,000 m³ (large). A first analysis suggests that there is a prevailing “background noise” pattern of relatively small DF-events that happen regularly during every DF-season. We hypothesize that rare, very large events represent a tipping point in the catchment system, which leads to a period of increased large-scale DF-activity over following seasons.