On thin ice: contrasting responses of woody NPP to permafrost thaw

Aleksandra Kulawska1,2, Angus Robert MacKenzie1,2, Nicholas Kettridge1,2,3, Sami Ullah1,2, and Thomas A. M. Pugh1,2,4

1University of Birmingham, College of Life and Environmental Sciences, School of Geography, Earth and Environmental Sciences, United Kingdom of Great Britain – England, Scotland, Wales (aek851@student.bham.ac.uk)
2Birmingham Institute of Forest Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
3Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E3, Canada
4Department of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, Sweden

Boreal forests are located at latitudes that are predicted to experience some of the greatest warming on the planet. Forests growing on permafrost may be particularly vulnerable, with accelerated soil warming and permafrost degradation linked to changes in woody net primary productivity (NPP$_w$). Recent evidence suggests that the responses of NPP$_w$ to permafrost thaw are mixed, with both increases and decreases in productivity observed following the onset of permafrost degradation. What determines these contrasting responses is currently poorly understood. This leads to uncertainties in predicting the future vegetation and carbon dynamics in permafrost regions, which propagate to climate projections in Earth System Models. Here, we propose a framework, and a set of hypotheses to explain the observed differences in the response of NPP$_w$ to permafrost thaw. We argue that the relationship between permafrost thaw and NPP$_w$ is non-linear and determined by a set of climatic and environmental variables. On this basis, we partition ecosystems into classes, and describe their relationships between permafrost thaw and NPP$_w$.