Tracking the South Pacific convergence zone variability and recent acidification reconstructed from tropical corals

Sara Todorović1,2, Henry C. Wu1, Braddock Linsley3, Delphine Dissard4, Henning Kuhnert5, Albert Benthien6, Klaus-Uwe Richter6, Markus Raitzsch5,6, and Jelle Bijma6

1Leibniz Centre for Tropical Marine Research, Biogeochemistry and Geology, Germany (sara.todorovic@leibniz-zmt.de)
2Faculty of Geosciences, University of Bremen, Bremen, Germany
3Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
4IRD-Sorbonne Universités, UPMC, Univ Paris 06-CNRS-MNHN, LOCEAN, Paris, France
5MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
6Alfred Wegener Institute – Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany

Massive tropical corals represent one of the most important natural archives of modern climate change. Coral based reconstructions give us the possibility to extend the instrumental oceanographic records and observe hydrographic variability on seasonal to interdecadal scales in tropical oceans. South Pacific convergence zone (SPCZ) variability, Interdecadal Pacific Oscillation (IPO) and El Niño-Southern Oscillation (ENSO) events are major drivers of global climate and may exert control on regional CO₂ absorption, outgassing and pH variability.

Porites sp. corals from Tonga and Rotuma (Fijian dependency) are being analyzed for multi-proxy (e.g. Sr/Ca, δ¹⁸O, δ¹³C, δ¹¹B, B/Ca) reconstructions of sea surface temperature and salinity (SST, SSS) and carbonate chemistry, on a monthly to annual resolution. Preliminary data of the Rotuma Porites sp. coral shows δ¹⁸O has been decreasing by 0.004 ‰ per year at the end of the 20th century, suggesting freshening and/or warming of the surface water. In the same period, we observe a δ¹³C decrease of 0.017 ‰ per year in-line with the anthropogenic CO₂ driven Suess effect. Initial results of the δ¹¹B Tonga Porites sp. show high interannual variability, and a strong trend of decrease of -0.0626 ‰ per year in the last five decades of the record (1949-2004) suggesting acidification. The results are in agreement with published coral-based reconstructions from the region.

When completed, the new records will facilitate exploring the effects of modern anthropogenic influence on ocean carbonate system and pH variation, and the relationship between them and interannual and decadal-interdecadal climatic fluctuations.