Freshwater Salinization Syndrome: Emerging Global Problem and Risk Management

Sujay Kaushal1,2, Gene Likens3, Paul Mayer4, Michael Pace5, Jenna Reimer1,2, Carly Maas1,2, Joseph Galella1,2, Ryan Utz6, Shuiwang Duan1,2, Julia Kryger1,2, Alexis Yaculak1,2, Walter Boger1,2, Nathan Bailey1,2, Shahan Haq1,2, Kelsey Wood1,2, Barret Wessel7, Daniel Collison1,2, and Belie Aisin1,2

1Department of Geology, University of Maryland, College Park, MD, USA
2Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
3Cary Institute of Ecosystem Studies, Millbrook, NY, USA
4US Environmental Protection Agency, National Health and Environmental Effects Research Lab, Western Ecology Division, Corvallis, Oregon, USA
5Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
6Chattham University, Gibsonia, PA, USA
7Department of Environmental Science and Technology, University of Maryland, College Park, USA

Freshwater salinization is an emerging global issue impacting safe drinking water, ecosystem health and biodiversity, and infrastructure. The complex interrelationships between salt ions and chemical, biological, and geologic parameters and consequences on the natural, social, and built environment are called Freshwater Salinization Syndrome (FSS). We analyze and discuss the expanding magnitude and scope of FSS including its discovery of widespread geographic importance in humid regions and connections to human-accelerated weathering and mobilization of 'chemical cocktails.' We also present empirical data analyses illustrating changes in FSS and its water quality impacts across time and space. We outline several frontiers in FSS research, and we also identify new management strategies and tradeoffs.