Finite-size analysis and the influence of the cross-section shape of the granular column collapses

Teng Man1,3, Herbert Huppert2, Ling Li1, and Sergio Galindo-Torres1

1School of Engineering, Westlake University, Hangzhou, China
2King's College, University of Cambridge, Cambridge, UK
3Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, China

The collapse of granular columns, which sheds light on the kinematics, dynamics, and deposition morphology of mass-driven flows, is crucial for understanding complex flows in both natural and engineering systems, such as debris flows and landslides. However, our research shows that a strong size effect and cross-section shape influence exist in this test. Thus, it is essential to better understand these effects. In this study, we explore the influence of both relative column sizes and cross-section shapes on the run-out behavior of collapsed granular columns and analyze their influence on the deposition morphology with the discrete element method (DEM) with Voronoi-based spheropolyhedron particles. We link the size effect that occurs in granular column collapse problems to the finite-size scaling functions and investigate the characteristic correlation length associated with the granular column collapses. The collapsing behavior of granular columns with different cross-section shapes is also studied, and we find that particles tend to accumulate in the direction normal to the edge of the cross-section instead of the vertex of it. The differences in the run-out behavior in different directions when the cross-section is no longer a circle can also be explained by the finite-size analysis we have performed in this study. We believe that such a study is crucial for us to better understand how granular material flows, how it deposits, and how to consider the size effect in the rheology of granular flows.