Fluid inclusion $^{40}\text{Ar}/^{39}\text{Ar}$ geochronology of andalusite from syntectonic quartz veins: perspectives on dating regional deformation and metamorphism events

Ming Xiao1,2,3, Ying-De Jiang1,2, Hua-Ning Qiu4, and Guo-Chun Zhao3,5

1State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
2CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
3Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
4Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences), Ministry of Education, Wuhan 430074, China
5State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Northern Taibai Street 229, Xi'an 710069, China

A long-lasting orogenic process often generates vast complexity of deformation and metamorphism. Understanding the time scales of these processes is essential for the reconstruction of the finite architecture of a fossil orogenic belt, which, nevertheless, is not always straightforward. This is because multiple episodes of tectonic events would lead to multiple growth periods of accessory minerals and deformation of rock-forming minerals, which brings challenges for conventional dating methods such as U–Pb, K/Ar, and $^{40}\text{Ar}/^{39}\text{Ar}$ step-heating. Fortunately, the emplacement of syn-tectonic quartz veins witness the deformation process and potentially, the associated metamorphism. They, therefore, have the potential to provide vital age information for regional crustal evolution. These veins, especially those in metapelitic terranes, usually contain andalusite, a fluid inclusion bearing K-poor pure aluminosilicate, which stands a good chance for directly dating syn-tectonic veining events by the fluid inclusion $^{40}\text{Ar}/^{39}\text{Ar}$ stepwise crushing technique.

Combined with detailed petro-structural investigation, this study applies the fluid inclusion $^{40}\text{Ar}/^{39}\text{Ar}$ geochronology, for the first time, on andalusite minerals in syn-tectonic quartz veins from the Chinese Altai Orogenic Belt, Central Asia, to explore a new way for dating deformation and metamorphism. $^{40}\text{Ar}/^{39}\text{Ar}$ stepwise crushing on three andalusite samples yielded well-defined Early Permian ages of 282–274 Ma. These ages are consistent with previously published emplacement ages of regional syn-tectonic leucosome/pegmatite/granite veins and metamorphic ages for local and regional schist/gneiss from the same metamorphic series. These results collectively suggest that the fluid inclusion $^{40}\text{Ar}/^{39}\text{Ar}$ geochronology of andalusite in syn-tectonic quartz veins has the potential to constrain the timing of fluid-present deformation and potentially contemporaneous metamorphism. This work, therefore, provides a novel way for the age constraints of regional tectonic-thermal evolution of metapelitic terranes in general.
Acknowledgements

This project was supported by the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515012190), the International Partnership Program of Chinese Academy of Sciences (No. 132744KYSB20190039) and the Projects funded by China Postdoctoral Science Foundation (No. 2019M663133). A Guangdong Special Support Program to Y.D. Jiang is also acknowledged.