EGU21-1715
https://doi.org/10.5194/egusphere-egu21-1715
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

The urban fingerprint in the sea-breeze hodograph reveled by high resolution WRF simulations

David Avisar1, Ran Pelta2, Alexandra Chudnovsky2, and Dorita Rostkier-Edelstein3
David Avisar et al.
  • 1Israel institute for biological research, Department of Applied mathematics, Israel (davida@iibr.gov.il)
  • 2Tel Aviv University, Department of Geography and Human Environment
  • 3Israel institute for biological research, Department of Environmental Physics, Israel

We implement and verify for the first time four Weather Research and Forecasting model urban configurations, focused on the coastal metropolitan area of Tel-Aviv (MTA) using updated land use and urban morphological maps. We analyze the mesoscale summertime flow and the urban canopy (UC) role in the occurrence of different hodograph dynamics observed within MTA at night. These events may be significant in air quality research. The four configurations – bulk (MM), single-layer (SLUCM), multi-layer (BEP), and BEP coupled with the building energy model (BEPBEM) – reproduce the observed diurnal temperature and wind cycles, with similar 10m wind direction bias and RMSE (15° and ~30°, respectively), with preference for MM and SLUCM at night. However, the SLUCM shows the lowest skill for the 10m wind speed (WS) (bias and RMSE 1ms-1), and the BEP shows the largest underestimation of the 2m temperature, ~-2.5°C. In the SLUCM, the WS increases over an UC and with increasing building heights. The simulations show that at night, a convergence line (CL) builds up with the urban heat island, downstream of the NW flow. West of the CL, the wind continues flowing from the sea, and rotates anti-clockwise to form a non-elliptical sea-breeze hodograph. Removing MTA UC restores an elliptical hodograph. East of the CL, the UC supports an elliptical hodograph with a clockwise rotation through the NE sector, previously reported as dynamically unstable. We expect such wind hodograph dynamics within similar coastal metropolitan areas.

How to cite: Avisar, D., Pelta, R., Chudnovsky, A., and Rostkier-Edelstein, D.: The urban fingerprint in the sea-breeze hodograph reveled by high resolution WRF simulations, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1715, https://doi.org/10.5194/egusphere-egu21-1715, 2021.

Displays

Display file