EGU21-1858
https://doi.org/10.5194/egusphere-egu21-1858
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Transitioning SAR-derived Oil Spill Thickness Measurements into an Operational Context

Benjamin Holt1, Frank Monaldo2, Cathleen Jones1, and Oscar Garcia3
Benjamin Holt et al.
  • 1Jet Propulsion Laboratory, Oceanography, United States of America (benjamin.m.holt@jpl.nasa.gov)
  • 2University of Maryland
  • 3WaterMapping Inc

We describe an effort to develop a quantifiable approach for determining the thicker components of oil spills using microwave synthetic aperture radar (SAR) imagery that can be utilized in an operational context to guide clean-up efforts. The presence of mineral oil on the surface can suppress the SAR returns in two ways. First, surface oil dampens the capillary waves making those areas darker in SAR imagery, an effect that been used to determine oil extent. The second is by modifying the dielectric properties of the surface from those of clean seawater to either pure oil or a mixture of oil and water as the oil weathers and thickens to form an emulsion. The emulsion provides an intermediate conductive surface layer between the highly conductive ocean itself and the very low, ‘radar transparent’ sheen layers, resulting in a further reduction in the radar returns for areas with thicker oil within an inhomogeneous oil slick. The challenges are to quantify the thickness and conditions for which this thicker layer becomes separable from the thinner oil, determine whether multiple thicker components can be identified, identify which airborne and spaceborne SAR systems can be used for this purpose, and determine under what range of environmental conditions, particularly wind speed, it is possible.

 

We are planning to hold field campaigns with in situ measurements and SAR and multispectral remote sensor data collections from drones, aircraft, and satellites. The field measurements include surface collections of oil, underwater spectrophotometry, and drone-based infrared, ultraviolet, and optical collections.  Coincident with the field measurements, the airborne L-band NASA-UAVSAR SAR system will image the seep fields to track temporal changes and overpassing satellite acquisitions will be acquired. UAVSAR provides fine resolution, low noise radar imagery under all weather and solar conditions and is fully polarimetric, which enables evaluation of multiple methods to characterize the oil slick. The system noise floor of this instrument, considerably less than all satellite SAR instruments, enables a detailed examination of the zones of reduced backscatter caused by varying oil thickness levels. The primary satellite SAR will be C-band Sentinel-1, accompanied potentially by C-band Radarsat-2 and L-band ALOS-2. Both the UAVSAR and satellite SAR analysis will utilize the contrast ratio, defined as the normalized radar cross section (NRCS) in open water divided by the NRCS in oil-covered water. The larger the ratio, the thicker the oil. The operational algorithm for oil thickness is under development using satellite SAR data and will be staged in NOAA’s SAR Ocean Product System (SAROPS) that currently produces SAR-derived wind speed and oil spill extent operationally, with the latter using the Texture-Classifying Neural Network (TCNNA) to automatically delineate oil versus non-oil covered areas. We are planning field campaigns at the natural oil seep area offshore of Santa Barbara, California, in March 2021 and during the 2022 Norwegian Clean Sea Association for Operating Companies’ (NOFO’s) coordinated releases of oil in the North Sea. Recent field collections and analysis will be shown, as available.

How to cite: Holt, B., Monaldo, F., Jones, C., and Garcia, O.: Transitioning SAR-derived Oil Spill Thickness Measurements into an Operational Context, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1858, https://doi.org/10.5194/egusphere-egu21-1858, 2021.

Displays

Display file