INTERACTION: INTeraction between lifE, Rifting And Caldera Tectonics In OkataiNa

Cécile Massiot1, Craig Miller2, Matthew Stott3, Pilar Villamor1, Hiroshi Asanuma4, Eric Boyd5, Matteo Lelli6, David D. McNamara7, Santanu Misra8, Doug R. Schmitt9, Guido Ventura10, Pujun Wang11, Ludmila Adam12, Edward Bertrand1, Fabio Caratori Tontini1, Geoff Kilgour2, Sarah D. Milicich1, Alex Nichols13, and Francesco Parisio14

1GNS Science, Lower Hutt, New Zealand (c.massiot@gns.cri.nz)
2GNS Science, Wairakei, New Zealand
3Department of Biological Sciences, University of Canterbury, Christchurch, New Zealand
4National Institute of Advanced Industrial Science and Technology, Fukushima Renewable Energy Research Institute, Koriyama, Japan
5Department of Microbiology and Immunology, Montana State University, U.S.A.
6National Research Council (CNR), Institute of Geosciences and Earth Resources (IGG), Italy
7Department of Earth, Ocean and Ecological Sciences, University of Liverpool, U.K.
8Department of Earth Sciences, Indian Institute of Technology, Kanpur (IIT Kanpur), India
9Dept. of Earth, Atmospheric, and Planetary Sciences, Purdue University, U.S.A.
10Roma Division, INGV, Roma, Italy
11Earth Sciences' College, Jilin University, China
12School of Environment, University of Auckland, Auckland, New Zealand
13School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
14Chair of Soil Mechanics and Foundation Engineering, Technische Universität Bergakademie Freiberg, Germany

Calderas are major volcanic features with large volcanic and seismic hazards. They also host diverse microbiota, provide heat, energy, mineral and economic benefits. Despite their scientific and socio-economic importance, we still do not completely understand calderas and the interactions between volcanism, tectonism, fluid circulation and the deep biosphere because in-situ and subsurface observations are sparse.

The Okataina Volcanic Centre (OVC) in Aotearoa New Zealand, is one of two active giant calderas of the Taupō Volcanic Zone within the rapidly extending continental intra-arc Taupō Rift. This superb natural laboratory has: 1) numerous past eruptions of varied size and style, 2) documented co-eruptive earthquakes, 3) vigorous hydrothermal manifestations, 4) diverse microbial communities in hot springs but unknown in the subsurface.

We propose to establish a scientific drilling programme at the OVC to address:

- What are the conditions leading to volcanic eruptions; and volcano-tectonic feedbacks in intra-rift calderas?
What controls fluid circulations in active calderas/rift regions?

Does subsurface microbial community composition vary with tectonic and/or volcanic activity?

High temperatures complicate drillhole design, restrict data collection and prevent exploration of the biosphere. By targeting the cooler parts of the caldera, this project will use conventional engineering to maximise sampling (drill cores and fluids), downhole logging and establish long-term observatories.

Two preliminary drill targets are suggested: (1) in the centre of the caldera; (2) through the caldera margin. Drill data will provide a comprehensive record of past activity, establishing eruption frequency-magnitude relationships and precursors. Combined with well-known fault rupture history, the relative timing of tectonic and magmatic activity will be untangled. Drill data will unravel the relationships between the groundwater and hydrothermal systems, magma, faults and stress, informing thermo-hydro-mechanical regional caldera models with findings applicable worldwide. Drill cores and a dedicated fluid sampler triggered by nearby earthquakes will reveal the composition, function and potential change of microbial activity in response to rock and fluid variations.

The programme is informed by indigenous Māori, regulatory authorities and emergency managers to ensure scientific, cultural, regulatory and resilience outcomes. The programme will underpin 1) community resilience to volcanic and seismic hazards; 2) sustainable management of groundwater and geothermal resources, and 3) understanding of subsurface microbial diversity, function and geobiological interactions. At these early stages of planning, we invite the scientific community to contribute to the concept of this project in the exceptional OVC settings and strengthen linkages with other ongoing research and scientific drilling programmes.