EGU21-2023, updated on 03 Mar 2021
https://doi.org/10.5194/egusphere-egu21-2023
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Early-Warning Signals for a Critical Transition in the Coupled Amazon Rainforest-South American Monsoon System

Nils Bochow1,2,3
Nils Bochow
  • 1UiT The Arctic University of Norway, Department of Mathematics and Statistics, Tromsø, Norway (nils.bochow@uit.no)
  • 2University of Copenhagen, Physics of Ice, Climate and Earth, Niels Bohr Institute, Copenhagen, Denmark
  • 3Potsdam Institute of Climate Impact Research, Potsdam, Germany

The Amazon rainforest is widely recognised as a potential tipping element in the Earth's climate system. While several studies suggest a sudden dieback of the rainforest ecosystem after partial deforestation [e.g., 1, 2], there is still a lack of understanding where to search for early-warning signals that might precede such a dieback. In this work we employ a non-linear model of the moisture transport across the Amazon Basin to propose several statistical and physical early warning signals for a critical transition in the coupled dynamics of the Amazon rainforest and the atmospheric circulation of the South American monsoon. 

Widespread deforestation and its effects on evapotranspiration and radiation have been shown to potentially trigger a collapse of the positive feedback related to latent heat release over the rainforest [3], resulting in substantially reduced rainfall amounts. The model includes a nonlinear contribution representing the acceleration of low-level moisture flow caused by condensational latent heating.  

Guided by our modelling results, we associate characteristic changes in the hydrological cycle as well as statistical indicators in observed data with deforestation-induced circulation changes that are consistent with the identified early-warning signals. Our findings indicate that in response to deforestation, the coupled atmosphere-vegetation system is destabilising and that further deforestation could trigger a transition of the Amazon rainforest to a savanna state. 

[1] Nobre, C. A., & Borma, L. D. S. (2009). “Tipping points” for the Amazon forest. Current Opinion in Environmental Sustainability. https://doi.org/10.1016/j.cosust.2009.07.003

[2] Hirota, M., Holmgren, M., Van Nes, E. H., & Scheffer, M. (2011). Global resilience of tropical forest and savanna to critical transitions. Science, 334(6053), 232–235. https://doi.org/10.1126/science.1210657

[3] Boers, N., Marwan, N., Barbosa, H. M. J., & Kurths, J. (2017). A deforestation-induced tipping point for the South American monsoon system. Scientific Reports, 7. https://doi.org/10.1038/srep41489

How to cite: Bochow, N.: Early-Warning Signals for a Critical Transition in the Coupled Amazon Rainforest-South American Monsoon System, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2023, https://doi.org/10.5194/egusphere-egu21-2023, 2021.

Displays

Display file