Hurricane dynamics and rapid intensification via dynamical systems indicators

Davide Faranda1,2,3, Gabriele Messori4,5, Pascal Yiou1, Soulivanh Thao1, Flavio Pons1, and Berengere Dubrulle6

1Laboratoire des Sciences du Climat et de l'Environnement, CEA Saclay l'Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191, Gif-sur-Yvette, France
2London Mathematical Laboratory, 8 Margravine Gardens, London, W6 8RH, UK
3LMD/IPSL, Ecole Normale Superieure, PSL research University, 75005, Paris, France
4Department of Earth Sciences, Uppsala University, and Centre of Natural Hazards and Disaster Science (CNDS), Uppsala, Sweden.
5Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
6SPEC, CEA, CNRS, Université Paris-Saclay, F-91191 CEA Saclay, Gif-sur-Yvette, France

Although the lifecycle of hurricanes is well understood, it is a struggle to represent their dynamics in numerical models, under both present and future climates. We consider the atmospheric circulation as a chaotic dynamical system, and show that the formation of a hurricane corresponds to a reduction of the phase space of the atmospheric dynamics to a low-dimensional state. This behavior is typical of Bose-Einstein condensates. These are states of the matter where all particles have the same dynamical properties. For hurricanes, this corresponds to a "rotational mode" around the eye of the cyclone, with all air parcels effectively behaving as spins oriented in a single direction. This finding paves the way for new parametrisations when simulating hurricanes in numerical climate models.