EGU21-2709, updated on 05 Apr 2021
https://doi.org/10.5194/egusphere-egu21-2709
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Supporting Long-Term Decision Making in Plant Production in Serbia

Mirjam Vujadinović Mandić1, Ana Vuković Vimić1, Marija Ćosić1, Zorica Ranković-Vasić1, Vladimir Djurdjević2, and Dragan Nikolić1
Mirjam Vujadinović Mandić et al.
  • 1University of Belgrade, Faculty of Agriculture, Belgrade, Serbia (mirjam@agrif.bg.ac.rs)
  • 2University of Belgrade, Faculty of Physics, Belgrade, Serbia

Agriculture is exposed to numerous risks related to climate change. Extreme weather events, such as droughts, heat waves, intensive rainfall and floods, as well as slow changes (increased temperatures, changes in precipitation regime and generally increased climate variability) affect the year-to-year stability of quality and quantity of the plant production.

Serbia is located in one of the regions that are recognized as hot spots where climate change unfolds faster than the global average. A survey completed by more than 100 agricultural producers in Serbia showed that in the last 20 years they were affected by mostly negative impact of climate change and suffered reduced quality and/or quantity of yields, mostly from droughts, high summer temperatures, spring frosts and storms with strong winds and hail.

Adaptation measures applied to reduce the risks of extreme weather events are mainly those subsidized by the Government (anti-hail nets, irrigation systems, etc.), recommended by the Agriculture Advisory Service or other independent expert (tillage methods, sowing time, time and water amount used for irrigation, use of fertilizers, etc.), as well as those learn from their own past experience (selection of varieties, crop rotation).

Most respondents regularly follow short-term weather forecasts from various sources and plan field activities accordingly. They are mainly familiar with the monthly forecast issued by the Republic Hydrometeorological Service of Serbia (RHMSS), which is also published by several newspapers. This forecast is based on the statistical method of analogies and the producers believe that they cannot rely on it in long-term planning. In general, they lack confidence in the long-term weather forecasts, mainly due to the fact that over the past years Serbian media were overwhelmed with tendentious seasonal forecasts from unreliable sources.

On the other hand, the survey showed that many producers would appreciate and use the seasonal weather outlooks if it was tailored according to their specific needs considering species they cultivate and local climate characteristics. They would like clearly presented information, in simple graph or map form, followed by textual advices on agro-technical measures they could adopt in order to reduce foreseen weather-related risks.

Integrated Agro-meteorological Prediction System (IAPS) is a project financed by the Science Fund of the Republic of Serbia through the Program for excellent project of young researchers (PROMIS) that aims to reduce the risk of weather-related events and increase climate resilience of Serbian agriculture, as well as to advance the use of climate information by producers and agricultural advisers in long-term planning. The idea is to create a coupled system od dynamically downscaled seasonal weather forecasts and crop models, accompanied with a set of products specifically tailored to support long-term decision making in agriculture. At the end of the project, the developed system and its products will be offered to RHMSS to include in the operative forecast system.

Acknowledgement: This research is supported by the Science Fund of the Republic of the Republic of Serbia, through PROMIS project “Integrated Agro-Meteorological Prediction System” (IAPS), grant no 6062629.

How to cite: Vujadinović Mandić, M., Vuković Vimić, A., Ćosić, M., Ranković-Vasić, Z., Djurdjević, V., and Nikolić, D.: Supporting Long-Term Decision Making in Plant Production in Serbia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2709, https://doi.org/10.5194/egusphere-egu21-2709, 2021.

Displays

Display link