From moderate earthquakes to continuous aseismic slip, a variety of ways to release strain along the Chaman fault (Pakistan, Afghanistan).

Manon Dalaison¹, Romain Jolivet¹², and Elenora van Rijsingenn¹
¹Laboratoire de Géologie - CNRS, Ecole Normale Supérieure - PSL University, Paris, France
²Institut Universitaire de France, Paris, France

Surface fault slip can be continuously monitored at fine spatial resolution from space using InSAR. Based on 5 years of observations (2014-2019), we describe and interpret the InSAR time series of deformation around the Chaman fault, a major strike-slip fault along the boundary between the Indian and Eurasian plates. Aseismic slip was observed on two >100 km long segments, reaching a maximum of 1 cm/yr. In between, a fault segment delimited by a restraining and releasing bend in the fault trace hosted three M_b 4.2, M_w 5.1 and M_w 5.6 earthquakes in our observation period. These earthquakes were followed by significant postseismic slip with characteristic duration between 1.5 to 3 years. Postseismic to coseismic surface slip ratios reach at least 0.6-1.2. In addition, aseismic slip was observed in close spatio-temporal relationship with those earthquakes. Finally, we argue that we detect numerous micro-slip events of M_w<3, although with large uncertainty. We provide an extensive description of the various modes of slip along this plate boundary fault and discuss the mechanical implications of such entangled behavior.