EGU21-3059, updated on 03 Mar 2021
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Using stable isotopes to estimate the time since disconnection of pools in temporary rivers 

Pilar Llorens1,2, Sebastián González2, Jérôme Latron1,2, Cesc Múrria2,3, Núria Bonada2,3, and Francesc Gallart1,2
Pilar Llorens et al.
  • 1Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain (
  • 2Freshwater Ecology, Hydrology and Management (FEHM-Lab), UB/IDAEA-CSIC, Barcelona, Spain
  • 3Department BEECA, Universitat de Barcelona, Barcelona, Spain

Temporary rivers, characterized by shifts between flowing water, disconnected pools and dry periods, represent over 50% of the world’s river network and future climatic projections suggest their increase. These rivers are understudied, especially when only disconnected pools remain, because gauging stations or hydrological models do not inform of what happens after the cessation of flow. In addition, most of biological indicators for water quality are designed for flowing waters and their adequacy for temporary rivers is uncertain.

The development of biological metrics adequate for the assessment of disconnected pools is difficult, because the high species replacement during and following flow cessation. For this reason, one hydrological variable of paramount importance for the assessment of ecological quality of disconected pools is the time since disconnection from the river flow.

The objective of our work is to present a methodology to estimate the time since disconnection of pools from the river flow. This methodology, following the Gonfiantini (1986) model, is based on the sampling of water stable isotopes in disconnected pools. For pools disconnected from the groundwater, knowing the isotopic modification of the water in time due to evaporation, allows to estimate the relative volume of water evaporated since the pool has been disconnected. However, this approach gets complicated when pools have relevant rainfall inputs or exchanges with groundwater.

Within the Vallcebre research area (42º12’N and 1º49’E), two artificial pools, one covered with a transparent lid to prevent the input of rainfall and another uncovered, were installed to validate this methodology in controlled conditions. From July to November 2020, water volume of these pools were weekly measured and sampled for isotopic analysis. In parallel, meteorological variables were monitored and rainfall was also sampled for water stable isotopes.

To develop and validate an operational methodology for estimating the time since disconnection, we first calculated the relative amount of evaporated water based on the variations of isotopic composition of the covered pool samples, and estimated the time since disconnection (for a given natural pool) using the potential evaporation calculated from the meteorological data. For the uncovered pool, the information of amount and isotopic composition of rainfall was added in a mass balance model. Additionally, the same estimations were calculated with standard information (i.e. the meteorological data obtained from the National Meteorological Service and precipitation isotopes data from the Global Network of Isotopes in Precipitation (GNIP) of the International Atomic Energy Agency). Finally, measured volumes changes in pools, were used to assess the limitations of the operational methodology and the sensitivity of the results to meteorological conditions.

Our approach suggests that changes in isotopic composition can be a reliable method to estimate time since disconnection of pools in temporary rivers to better assess their ecological quality.

How to cite: Llorens, P., González, S., Latron, J., Múrria, C., Bonada, N., and Gallart, F.: Using stable isotopes to estimate the time since disconnection of pools in temporary rivers , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3059,, 2021.


Display file