EGU21-4151
https://doi.org/10.5194/egusphere-egu21-4151
EGU General Assembly 2021
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Using the ERA5 dataset of atmospheric variables to estimate daily reference evapotranspiration in Sicily, Italy.

Giuseppe Provenzano1 and Matteo Ippolito2
Giuseppe Provenzano and Matteo Ippolito
  • 1Università degli Studi di Palermo, Department Agricultural, Food and Forest Sciences, Palermo, Italy (giuseppe.provenzano@unipa.it)
  • 2Università degli Studi di Palermo, Department Agricultural, Food and Forest Sciences, Palermo, Italy (matteo.ippolito@unipa.it)

Crop evapotranspiration (ET) plays a key role in many hydrological processes involving the soil-plant-atmosphere system. The concept of reference crop evapotranspiration (ET0) was introduced to estimate the atmosphere evaporation demand independently of crop type, development stage and management practices. Among the available methods to estimate ET0, the Penman-Monteith equation proposed by the Food and Agriculture Organization of the United Nations (FAO56-PM), is considered one of the most accurate, so that it is assumed as a reference to calibrate other simplified procedures. In several regions of the world, the limited availability of meteorological observations to estimate ET0 can be overcome by using gridded reanalysis dataset created by data assimilation of weather observations. Different datasets with relatively high spatial resolution but different in terms of Spatio-temporal resolution have been generated and are freely downloadable at the global scale. The latest ERA5-Land product released in 2019 is characterized by a spatial grid to 0.1° latitude and 0.1° longitude. The database provides several land variables at hourly time-step including, among others, air temperature, dew point temperature and solar radiation at 2.0 m above the soil surface, as well as the wind speed components at 10 m height.

The objective of the research was to assess the suitability of ERA5-Land dataset of climate data to predict daily reference evapotranspiration in Sicily, Italy. For the period 2006-2015, the performance of the reanalysis data to capture the local climate variables was assessed based on the comparison with the corresponding ground data measured by a network of 39 climate stations in Sicily belonging to the Agrometeorological Information Service (SIAS). After evaluating the statistical errors associated with each climatic variables retrieved from the ERA5-Land, the comparison between daily ET0 values obtained with the FAO56-PM and considering both the dataset was carried out.

The analysis showed that air temperature, solar radiation and wind speed retrieved by the ERA-5 dataset resulted in quite good agreement with the corresponding measured on the ground, with an average root mean square error (RMSE) equal respectively to 1.8°C, 2.9 MJm-2d-1, and 1.3 ms-1 and corresponding mean bias errors (MBE) of -0.4°C, 1.0 MJm-2d-1  and -0.1 ms-1. On the other hand, relative air humidity was characterized by average values of RMSE and MBE respectively equal to 10.3% and 5.6%. When considering all the examined climate stations, the RMSE and MBE values associated with ET0 ranged from 0.4 to 1.3 mm d-1, and -1.0 and 0.0 mm d-1, supporting the possibility to consider the ERA-5 data to obtain suitable estimations of crop reference evapotranspiration even for other Mediterranean countries where measured climate data are not available.

How to cite: Provenzano, G. and Ippolito, M.: Using the ERA5 dataset of atmospheric variables to estimate daily reference evapotranspiration in Sicily, Italy., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4151, https://doi.org/10.5194/egusphere-egu21-4151, 2021.

Corresponding displays formerly uploaded have been withdrawn.