Improving Precipitation Retrieval by Brightness Temperature Temporal Variation (ΔT_B): Definition, Computation, and Application

Yalei You1, Christa Peters-Lidard2, Stephen Munchak2, and Sarah Ringerud1

1University of Maryland, ESSIC, United States of America (yyou@umd.edu)
2Goddard Space Flight Center, NASA, United States of America

Current microwave precipitation retrieval algorithms utilize the instantaneous brightness temperature (T_B) from a single satellite to estimate the precipitation rate. This study proposed to add the time-dimension into the precipitation estimation process by using the T_B (or emissivity) temporal variation (ΔT_B or Δe) derived from the Global Precipitation Measurement (GPM) microwave radiometer constellation. Results showed that (1) ΔT_B can improve the precipitation estimation over the cold surfaces (i.e., snow-covered region) through minimizing the microwave land surface emissivity’s influence; (2) Δe under the clear-sky conditions can accurately estimate the daily rainfall accumulation; and (3) ΔT_B can be used to identify the liquid raindrop signature over the low surface emissivity areas. This study highlights the importance of maintaining the current passive microwave satellite constellation.