Interplanetary dust observations with the Solar Orbiter RPW instrument: a first year of data.

Arnaud Zaslavsky1, Ingrid Mann2, Stuart Bale3, Andrzej Czechowski4, Karine Issautier1, Eric Lorfèvre5, Milan Maksimovic1, Nicole Meyer-Vernet1, David Pisa6, Kristina Rackovic-Babic1,7, Jan Soucek6, and Jakub Vaverka8

1LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, France
2Arctic University of Norway, Tromsø, Norway
3Physics Department and Space Sciences Laboratory, University of California, Berkeley, CA, USA
4Space Research Center, Polish Academy of Sciences, Warsaw, Poland
5CNES (Centre National d’Études Spatiales) 18, Avenue Édouard Belin 31400 Toulouse, France
6Institute of Atmospheric Physics of the Czech Academy of Sciences, Prague, Czechia
7Department of Astronomy, Faculty of Mathematics, University of Belgrade, Serbia
8Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

Impacts of dust grains on spacecraft are known to produce typical impulsive signals in the voltage waveform recorded at the terminals of electric antennas. Such signals are, as could be expected, routinely detected by the radio and plasma waves (RPW) instrument aboard Solar Orbiter, therefore providing in-situ measurements of the interplanetary dust density along the spacecraft trajectory.

We present a statistical analysis of the first year and half of dust impact data recorded by Solar Orbiter RPW between 1 AU and 0.5 AU. We discuss the results in terms of constraints that can be put on beta-meteoroids and interstellar dust fluxes, and compare them to results obtained by STEREO at 1 AU and more recently by Parker Solar Probe at 0.5 AU.