Analysis of the anthropogenic and biogenic NOx emissions over 2008-2017: assessment of the trends in the 30 most populated urban areas in Europe

Audrey Fortems-Cheiney¹, Gregoire Broquet¹, Isabelle Pison¹, Marielle Saunois¹, Elise Potier¹, Antoine Berchet¹, Gaelle Dufour², Guillaume Siour², Hugo Denier van der Gon³, Stijn Dellaert³, and Folkert Boersma⁴,⁵

¹Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, France. (audrey.fortems@lsce.ipsl.fr)
²Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France.
³Department of Climate, Air and Sustainability, TNO, P.O. Box 80015, 3508 TA Utrecht, Netherlands
⁴Wageningen University, Meteorology and Air Quality Section, Wageningen, the Netherlands.
⁵Royal Netherlands Meteorological Institute, R&D Satellite Observations, de Bilt, the Netherlands.

We use the OMI-QA4ECV-v1.1 NO₂ tropospheric columns over the 10-yr 2008-2017 period to confront satellite-based trends in NO₂ concentrations to those from the state-of-the-art regional chemistry-transport model CHIMERE and to evaluate the bottom-up anthropogenic and biogenic NOx emissions in Europe. A focus is made for the 30 most populated urban areas in Europe. Over urban areas in Western Europe, except for coastal cities, OMI confirm the drop in the simulated CHIMERE NO₂ tropospheric columns based on the latest country emission official reporting. OMI does not show significant decreasing trends over Central and Eastern Europe urban areas. Increasing biogenic emissions helps reconciling CHIMERE and OMI trends over urban areas in Central Europe and over rural areas, confirming the importance of accounting for non-anthropogenic emissions to assess long-term trends. Over Eastern Europe, our results question emission reductions estimated for particular sectors and in particular the road transport, public power and industrial emissions.