Methane emissions from Scots pine and Norway spruce in the spring

Salla Tenhovirta1,2, Lukas Kohl1,2, Markku Koskinen1,2, Marjo Patama, and Mari Pihlatie1,2,3

1Environmental Soil Science, Department of Agricultural Sciences, University of Helsinki, Finland
2Institute for Atmospheric and Earth System Research / Forest Sciences
3Viikki Plant Science Centre (VIPS), University of Helsinki, Finland

Plant shoots can emit methane (CH\textsubscript{4}) which is produced by an unknown aerobic, non-enzymatic process within the plant. Only a few publications report shoot CH\textsubscript{4} fluxes outside a laboratory setting, and those of boreal trees come to contradictory results (Machacova et al., 2016; Sundqvist et al., 2012). Resolving the CH\textsubscript{4} fluxes of boreal trees is needed in order to understand the role of boreal forests in the global methane budget.

We conducted shoot chamber measurements on Scots pine (\textit{Pinus sylvestris}) and Norway spruce (\textit{Picea abies}) between April and May 2019, to find out if the shoots of boreal conifer trees are a source of aerobic CH\textsubscript{4} during the early growing season. The experiment was done with potted 2-3 year old nursery saplings in a common garden experiment, to enable regular measurements over a period of six weeks. CH\textsubscript{4} fluxes were measured 2-3 times per day, on two days per week from seven saplings (four \textit{P. sylvestris} and three \textit{P. abies}, respectively). We also conducted two around the clock campaigns where we measured the saplings hourly throughout the day and night. The CH\textsubscript{4} and carbon dioxide (CO\textsubscript{2}) exchange were quantified with a portable LGR online greenhouse gas analyser connected in closed loop to custom-made, transparent shoot chambers. Photosynthetically active radiation (PAR) was measured concurrently with a PP Systems EGM-4 monitor.

Our measurements show emissions of CH\textsubscript{4} from both tree species, ranging from 0.25 to 7.64 and -0.45 to 6.42 g-1 needle dry weight h-1 (inter-quartile range) from \textit{P. sylvestris} and \textit{P. abies} shoots, respectively. The shoot CH\textsubscript{4} emissions from both species correlated positively with PAR. During the around the clock measurements the emissions showed a diurnal pattern. Our experiment demonstrates that the shoots of both \textit{P. sylvestris} and \textit{P. abies} can be a source of CH\textsubscript{4} in the spring and that the source process is likely driven by solar irradiation.

References