2019-2020 mechanisms of fresh water release from the Beaufort Gyre region of the Arctic Ocean

Andrey Proshutinsky1, Richard Krishfield1, Mary-Louise Timmermans2, Isabela Le Bras1, John Toole1, Robert Pickart1, Bill Williams3, Sarah Zimmermann3, Gennady Platov4, Elena Golubeva4, Dmitry Dukhovskoy5, Stine Rose6, and Ole Andersen6

1Woods Hole Oceanographic Institution, Physical Oceanography, Woods Hole, United States of America (aproshutinsky@whoi.edu)
2Yale University, New Haven, United States of America (mary-louise.timmermans@yale.edu)
3Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, Canada (Bill.Williams@dfo-mpo.gc.ca)
4Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk, Russia (platov.g@gmail.com)
5Florida State University, Tallahassee, United States of America (ddukhovskoy@fsu.edu)
6Technical University of Denmark, Kongens Lyngby, Denmark (istine@space.dtu.dk)

From September 2019 to September 2020, the sea-level atmospheric pressure over the Beaufort Gyre region (BGR) was reduced relative to climatology and a well pronounced cyclonic circulation forcing of sea ice and ocean lasted more than eight months. This resulted in the following: increased sea ice area in 2020 relative to 2019; periodic reversals of sea ice drift from anticyclonic to cyclonic; the formation of an unusual donut-shaped sea ice cover pattern (in August-September 2020); upwelling in the central BGR with a reduction of freshwater content by \(\sim 1000 \text{ km}^3\); downwelling along the periphery of the BGR; changes in the intensity and trajectories of freshwater fluxes from the Mackenzie river and Bering Strait and fresh water contributions to the BGR freshwater content; unusual warming of the Pacific water layer in the northern BGR; and biogeochemical changes driven by ocean circulation and water mass redistribution. Numerical modeling is used to better understand the causes and consequences of the observed changes. Sea-level atmospheric pressure from NCAR/NCEP reanalysis, sea ice concentration and ice motion from NSIDC, altimetry based sea surface heights from Technical University of Denmark, and hydrographic data from the Beaufort Gyre project and USCGC Healy expeditions are used in the study.