Statistical Distribution of Bifurcation of Earth’s Inner Energetic Electron Belt at tens of keV

Man Hua¹, Binbin Ni¹,², Wen Li³, Qianli Ma³,⁴, Xudong Gu¹, Song Fu¹, Xing Cao¹, Yingjie Guo¹, and Yangxizi Liu¹

¹Wuhan University, Department of Space Physics, China
²CAS Center for Excellence in Comparative Planetology, Hefei, Anhui, China.
³Center for Space Physics, Boston University, Boston, Massachusetts, USA.
⁴Department of Atmospheric and Oceanic Sciences, UCLA, Los Angeles, California, USA.

The Earth’s inner energetic electron belt typically exhibits one-peak radial structure with high flux intensities at radial distances < ~2.5 Earth radii. Recent studies suggested that human-made very-low-frequency (VLF) transmitters leaked into the inner magnetosphere can efficiently scatter energetic electrons, bifurcating the inner electron belt. In this study, we use 6-year electron flux data from Van Allen Probes to comprehensively analyze the statistical distributions of the bifurcated inner electron belt and their dependence on electron energy, season, and geomagnetic activity, which is crucial to understand when and where VLF transmitters can efficiently scatter electrons in addition to other naturally occurring waves. We reveal that bifurcation can be frequently observed for tens of keV electrons under relatively quiet geomagnetic conditions, typically after significant flux enhancements that elevate fluxes at L = 2.0 – ~2.5 providing the prerequisite for the bifurcation. The bifurcation typically lasts for a few days until interrupted by substorm injections or inward radial diffusion. The L-shells of bifurcation dip decrease with increasing electron energy, and the occurrence of bifurcation is higher during northern hemisphere winter than summer, supporting the important role of VLF transmitter waves in energetic electron loss in near-Earth space.