EGU21-6336, updated on 09 Jan 2024
https://doi.org/10.5194/egusphere-egu21-6336
EGU General Assembly 2021
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Quantifying hydraulic roughness from field data: can bed morphology tell the whole story?

Sjoukje de Lange, Suleyman Naqshband, and Ton Hoitink
Sjoukje de Lange et al.
  • Wageningen University, ESG, HWM, Utrecht, Netherlands (sjoukje.delange@wur.nl)

Bedforms are thought to be a major cause of hydraulic roughness in channels. The geometry of the river bed, shaped by bars, dunes, and ripples, and the spatial and temporal distribution of these, influence the resulting roughness variations. Roughness is a fundamental parameter for understanding river flow behaviour by influencing sediment transport and water level.

Quantification of roughness is challenging since it is not directly measurable in the field. It is therefore inferred from hydrological characteristics, -including water depth, water surface slope, flow velocity, discharge-, as well as morphological characteristics, -such as bedform height-, or derived from calibration of a hydraulic model.

This study contributes to the elucidation of factors influencing hydraulic roughness, and its quantification from field data. Proper quantification of roughness and its spatiotemporal behavior will increase our knowledge in river behavior and will lead to improvement of river management strategies and operational models.

In this research, three methods will be explored, to quantify the spatial distribution of hydraulic roughness in the field. We aim to state the importance of bed morphology for hydraulic roughness and we pursue the auxiliary aim to explore the spatial distribution of bedforms and roughness in our case study area river Waal, the Netherlands.

Method 1 uses the St. Vernant equations (better known as the Chezy equations) to quantify roughness, with as input among others flow velocity, bed slope and water surface slope. This value is seen as the ‘true’  roughness of the river system. Method 2 is a traditionally often used method, where form roughness is obtained from dune characteristics such as height and length via empirical predictors. Method 3 makes use of characteristics of the bed itself, not strictly related to 2D bedform geometry, specifically the inclination of the streamwise local elevation profile, i.e. local topographic leeside angle. Doing so eliminates the necessity of defining dune characteristics, and therefore taking one, often arbitrary, step out of the procedure to quantify roughness.

The three methodologies show the same general trend and order of magnitude of roughness (C=30-70 m0.5/s, mean 42 m0.5/s) however kilometer-scale variations show contrasting patterns. Nor dune geometry neither local topographic leeside angle manage to fully explain the variations in the roughness as obtain from the st. Vernant equations. From this we conclude that bed morphology does not seem to be the only explaining factor for roughness variations. Possible explanations include the low leeside angle of dunes (mean <10°), the influence of man-made structures such as groynes and longitudinal training dams, the influence of fixed gravel layers in sharp bends, river curvature, and cross-sectional variation in river depth (bars) and flow velocity. Further steps will be made to unravel the contributing factors for spatial variation in roughness.

How to cite: de Lange, S., Naqshband, S., and Hoitink, T.: Quantifying hydraulic roughness from field data: can bed morphology tell the whole story?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6336, https://doi.org/10.5194/egusphere-egu21-6336, 2021.

Displays

Display file