New data on the character of 137Cs lateral and vertical migration in soil-litter-moss cover within undisturbed elementary landscape geochemical systems on the test site in the Chernobyl abandoned zone, Russia

Denis Dolgushin and Elena Korobova
Vernadsky Institute of Geochemistry and Analytical Chemistry, Laboratory of biogeochemistry of environment, Moscow, Russian Federation (dolgyshin25@gmail.com)

A study of 137Cs distribution in two new landscape cross-sections characterizing the ELGS system (top-slope-closing depression) in the “Vyshkov-2” test site located in the Chernobyl abandoned zone, the Bryansk region, Russia, has been performed in 2020. The test site (70×100 m) is located on the Iput’ river terrace in a pine forest characterized by undisturbed soil-plant cover. The soil cover is presented by sod-podzolic sandy illuvial-ferruginous soils. The initial level of 137Cs contamination of the area varied from 1480 kBq/m2 to 1850 kBq/m2. Cs-137 activity was measured in the soil, moss and litter cover along two parallel (the distance was 5 m) cross-sections with 1 m step. Moisture content was also determined in the studied objects to roughly assess the influence of water regime on radiocaesium migration. Surface 137Cs activity was measured in field conditions by adapted gamma-spectrometer Violinist-III. Cs-137 content in the soil and plant samples was determined in laboratory conditions by Canberra gamma-spectrometer with HPGe detector.

Analysis of the obtained data showed that a major part of 137Cs is now fixed in the soil layer 2-10 cm deep while the highest specific activity of radiocaesium is found at a depth of 2-8 cm that can be explained mainly by the burial of the initially contaminated layer under the annual leaf fall.

Along the first cross-section we observed positive correlation between 137Cs surface activity and the content radiocaesium in the top soil layer 0-2 cm ($r_{0.05}=0.643$, n=15). Cs-137 activity in the moss samples correlated with the radionuclide activity in soil samples 4-6 cm deep ($r_{0.05}=0.627$; n=15). In the moss samples the highest correlation was observed between the green and rhizoid moss parts ($r_{0.01}=0.704$, n=60). Correlation between radiocaesium activity of the green part of mosses and the underlain litter samples was lower, but also significant ($r_{0.01}=0.612$, n=60). Values of 137Cs activity in the rhizoid part of moss and in litter were also positively linked, but to a lower degree ($r_{0.01}=0.402$, n=60).

Along the second cross-section correlation between 137Cs surface activity and the content radiocaesium in the top soil layer 0-2 cm equaled to $r_{0.05}=0.507$ (n=7). Radiocaesium content in moss samples (green, rhizoid parts) and litter was higher correlated with 137Cs content in soil layer 2-4 cm ($r_{0.05}=0.640$; 0.410; 0.460, n=7). Similar to the first cross-section the highest correlation was...
observed between the green and rhizoid parts of moss ($r_{0.01}=0.780$, $n=39$). Relation between 137Cs activity in green part of moss and litter samples appeared smaller than along the first cross-section but still significant ($r_{0.01}=0.419$, $n=39$) while that between the rhizoid part of moss and litter was higher ($r_{0.01}=0.509$, $n=39$).

Performed study showed that in the studied objects 137Cs secondary migration has a specifically stable character which may be related to spatial peculiarities of radionuclide migration in soil-plant cover controlled by water regime in the ELGS system. In our opinion this may form a characteristic cyclic variation of 137Cs activity observed along cross-sections of ELGS.

The reported study was funded by RFBR according to the research project № 19-05-00816.