GlacierMIP3 global glacier mass change equilibration experiments - rationale and experimental design

Harry Zekollari1,2,3, Regine Hock4, Ben Marzeion5,6, Fabien Maussion7, Lilian Schuster7, and the GlacierMIP3 participants*

1Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, Zurich, Switzerland
2Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
3Laboratoire de Glaciologie, Université libre de Bruxelles, Brussels, Belgium
4Department of Geosciences, University of Oslo, Oslo, Norway
5Institute of Geography, University of Bremen, Bremen, Germany
6MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
7Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria

*A full list of authors appears at the end of the abstract

Glaciers outside the ice sheets are major contributors to today's sea-level rise and are projected to remain so in the coming century. With the goal to better assess the future sea-level contribution from glaciers and to quantify related uncertainties, the Glacier Model Intercomparison Project (GlacierMIP) has set out to develop a series of coordinated experiments to be run as a community-wide effort.

The first two phases of the GlacierMIP have focused on the evolution of glaciers throughout the 21st century (Hock et al., 2019; Marzeion et al., 2020). In the third phase of GlacierMIP (GlacierMIP3 – equilibration), a new set of experiments has been designed to investigate the equilibration of glaciers under constant climate conditions. These experiments will allow us to answer the following fundamental questions:

1. What would be the equilibrium volume and area of all glaciers outside the ice sheets if global mean temperatures were to stabilize at present-day levels?
2. What would be the equilibrium volume and area of all glaciers outside the ice sheets if global mean temperatures were to stabilize at different temperature levels (e.g. +1.5, +2, relative to pre-industrial)?
3. For each of these global mean temperature stabilization scenarios, how much time would the glaciers need to reach their new equilibrium?

In this contribution, we present the experimental design of GlacierMIP3 and open up the floor for ideas and discussions about possible processing of these experiments. We also invite interested individuals and groups to join us to discuss the possibility of their model to be included in the newest phase of GlacierMIP.
References

GlacierMIP3 participants: GlacierMIP3 participants