EGU21-8048
https://doi.org/10.5194/egusphere-egu21-8048
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Impact of combined nitrogen loading and long-term drought on a semi-natural temperate grassland - achieving a process based understanding across scales

Maren Dubbert1, Angelika Kübert1, Arndt Piayda2, Christiane Werner1, and Youri Rothfuss3
Maren Dubbert et al.
  • 1University Freiburg, Ecosystem Physiology, Germany (maren.dubbert@cep.uni-freiburg.de)
  • 2Thünen-Institut für Agrarklimaschutz
  • 3Forschungszentrum Jülich, IGB-3 Agrosphere

Two important threats to the sustainable functioning of seminatural grasslands in temperate zones are (1) nutrient loading due to agricultural fertilization and pollution, and (2) the increase of extreme drought events due to climate change. These threats may cause substantial shifts in species diversity and abundance and considerably affect the carbon and water balance of ecosystems. The synergistic effects between those two threats, however, can be complex and are poorly understood. Here, we experimentally investigated the effects of nitrogen addition and extreme drought (separately and in combination) on a seminatural temperate grassland, located in Freiburg (South Germany). To study the grassland response, we combined eddy-covariance techniques with open gas exchange systems. Open gas exchange chambers were connected to an infrared gas analyzer and water isotope spectrometer, which allowed the partitioning of net ecosystem exchange and evapotranspiration. In addition, leaf level physiological responses, e.g. leaf gas-exchange and water potentials, as well as vegetation parameters, e.g. species richness, species abundance, leaf area index, were assessed.

Our results suggest that grassland communities, strongly weakened in their stress response by nitrogen loading, can substantially lose their carbon sink function during drought. Over the growing season (April-September), the carbon sequestration of the studied grassland was reduced by more than 60% as a consequence of nitrogen addition. Nitrogen addition in combination with precipitation reduction decreased carbon sequestration by 73%. We observed more efficient N utilization in grasses compared to forbs. However, these clearly specific responses of the different functional groups to N loading, both functional groups were able to maintain homeostasis of leaf carbon and water fluxes. Thus, strong declines in the (community) carbon sequestration and water use efficiency were not related to leaf physiological responses in assimilation and transpiration. Instead, nitrogen addition caused a significant loss in forb species (−25%) and precipitation reduction promoted a strong dominance of grass species at season start. Consequently, the resulting grass-dominated and species-poor community suffered from a strong above-ground dieback during the dry summer months, likely caused by lower water use efficiency and weaker drought adaptations of the species community. 

Eutrophication can severely threaten the resilient functioning of grasslands, in particular when drought periods will increase as predicted by future climate scenarios. Our findings emphasize the importance of preserving high diversity of grasslands to strengthen their resistance against extreme events such as droughts.

How to cite: Dubbert, M., Kübert, A., Piayda, A., Werner, C., and Rothfuss, Y.: Impact of combined nitrogen loading and long-term drought on a semi-natural temperate grassland - achieving a process based understanding across scales, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8048, https://doi.org/10.5194/egusphere-egu21-8048, 2021.

Displays

Display file