Data-driven modeling decadal-to-centennial ENSO variability and its response to external forcing

Aleksei Seleznev, Dmitry Mukhin, Andrey Gavrilov, and Alexander Feigin
Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russian Federation
(aseleznev@ipfran.ru)

We investigate the decadal-to-centennial ENSO variability based on nonlinear data-driven stochastic modeling. We construct data-driven model of yearly Niño-3.4 indices reconstructed from paleoclimate proxies based on three different sea-surface temperature (SST) databases at the time interval from 1150 to 1995 [1]. The data-driven model is forced by the solar activity and CO2 concentration signals. We find the persistent antiphasing relationship between the solar forcing and Niño-3.4 SST on the bicentennial time scale. The dynamical mechanism of such a response is discussed.

The work was supported by the Russian Science Foundation (Grant No. 20-62-46056)