

EGU21-8505

https://doi.org/10.5194/egusphere-egu21-8505 EGU General Assembly 2021 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

Expected first results from the SuperCam microphone onboard the NASA Perseverance rover

Nina Lanza¹, Baptiste Chide^{2,3}, David Mimoun², Cesar Alvarez⁴, Stanley Angel⁵, Pernelle Bernardi⁶, Olivier Beyssac⁷, Bruno Bousquet⁸, Alexandre Cadu², Elise Clave⁸, Olivier Forni³, Thierry Fouchet⁶, Olivier Gasnault³, Xavier Jacob⁹, Gaetan Lacombe³, Javier Laserna⁴, Jeremie Lasue³, Ralph Lorenz¹⁰, Pierre-Yves Meslin³, Franck Montmessin¹¹, and the SuperCam Acoustics Working Group^{*}

¹Los Alamos National Laboratory, Los Alamos, NM, U.S.A. (nlanza@lanl.gov)

The NASA Perseverance rover will land on Mars in February 2021, bringing with it a new suite of analytical instruments with which to explore its landing site in Jezero crater. The primary goal of this new mission is to assess the geology and past habitability in order to identify and cache samples with a high likelihood of preserving biosignatures, in preparation for a future sample return mission [1]. As part of its instrument payload, Perseverance will carry the SuperCam instrument [2-3]. SuperCam combines a number of analytical techniques, notably a laser-induced breakdown spectroscopy (LIBS) instrument for chemical analysis that is coupled with a microphone for acoustic studies. The SuperCam microphone is a commercial of-the-shelf electret (based on Knowles EK-23132) and is designed to record sounds in the audible range, from 100 Hz to 10 kHz, during the surface mission. There are three main science investigations of interest for the SuperCam microphone: 1) Analysis of the LIBS acoustic signal; 2) study of atmospheric phenomena; and 3) examination of rover mechanical sounds. Since the atmosphere will be the source of acoustic signals, the microphone may be used to better understand the nature of the atmosphere and related phenomena such as thermal gradient and convective behavior in the rover's vicinity [4], the behavior of dust devils [5], and to refine current atmospheric attenuation models for Mars [6]. Under atmosphere, LIBS analysis produces an acoustic signal due to the creation of a shock wave during laser ablation of a target. This acoustic signal can provide critical information about a target's hardness and ablation depth [7-8] and whether there are coatings or

²ISAE-SUPAERO, Toulouse, France

³IRAP-CNRS, Toulouse, France

⁴Universidad de Malaga, Malaga, Spain

⁵University of South Carolina, SC, U.S.A.

⁶LESIA, Meudon, France

⁷IMPMC, Paris, France

⁸CELIA, Bordeaux, France

⁹IMFT, Toulouse, France

¹⁰Applied Physics Laboratory, MD, USA

¹¹LATMOS, Guyancourt, France

^{*}A full list of authors appears at the end of the abstract

thin layers present [9]. Mechanisms on the rover itself will also provide a source of acoustic signal that may be examined by the SuperCam microphone, notably sounds produced by the Mars Oxygen ISRU Experiment (MOXIE, [10]) instrument pumps during oxygen production. By the time of the conference, the SuperCam microphone should have acquired the first sounds on Mars; we will report on these exciting initial results and compare them to our prelanding expectations.

[1] Farley K.A. et al. (2020) SSR 216, 142. [2] Wiens R.C. et al. (2021) SSR 217(4). [3] Maurice, S. et al. (in revision) SSR. [4] Chide, B. et al. (2020) 52nd LPSC. [5] Murdoch, N. et al. (2021) 52nd LPSC. [6] Chide, B. et al. (2020) AGU Fall meeting, S007-02. [7] Chide, B. et al. (2019) SAB 153, 50-60. [8] Chide, B. et al. (2020) SAB 174, 106000. [9] Lanza, N.L. et al (2020) 51st LPSC, no. 2807. [10] Hecht, M. H. et al. (2015) 46th LPSC, no. 2774.

SuperCam Acoustics Working Group: N.L. Lanza (1), B. Chide (2,3), C. Alvarez (4), S. M. Angel (5), P. Bernardi (6), O. Beyssac (7), B. Bousquet (8), A. Cadu (2), E. Clavé (8), O. Forni (3), T. Fouchet (6), O. Gasnault (3), X. Jacob (9), G. Lacombe (3), J. Laserna (4), J. Lasue (3), R.D. Lorenz (10), P.-Y. Meslin (3), F. Montmessin (11), J. Moros (4), N. Murdoch (2), A. M. Ollila (1), P. Pilleri (3), P. Purohit (4), A. L. Reyes-Newell (1), S. Schröder (12), A. Stott (2), D. Vogt (12), S. Maurice (3), R. C. Wiens (1), D. Mimoun (2) --- 1) Los Alamos National Laboratory, NM, USA 2) ISAE-SUPAERO, Toulouse, France 3) IRAP-CNRS, Toulouse, France 4) Universidad de Malaga, Malaga, Spain 5) University of South Carolina, SC, USA 6) LESIA, Meudon, France 7) IMPMC, Paris, France 8) CELIA, Bordeaux, France 9) IMFT, Toulouse, France 10) APL, MD, USA 11) LATMOS, Guyancourt, France 12) DLR, Berlin, Germany