EGU21-9446
https://doi.org/10.5194/egusphere-egu21-9446
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Investigating the internal structure of the Antarctic Ice Sheet: the utility of isochrones for spatio-temporal ice sheet model calibration

Johannes Sutter1, Hubertus Fischer1, and Olaf Eisen2
Johannes Sutter et al.
  • 1Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland (johannes.sutter@climate.unibe.ch)
  • 2Alfred Wegener Institute Helmholtz-Centre for Polar and Marine Research, Bremerhaven, Germany

Ice Sheet Models are a powerful tool to project the evolution of the Greenland and Antarctic Ice Sheets, and thus their future contribution to global sea-level changes. Probing the fitness of ice-sheet models to reproduce ongoing and past changes of the Greenland and Antarctic ice cover is a fundamental part of every modelling effort. However, benchmarking ice-sheet model data against real-world observations is a non-trivial process, as observational data comes with spatio-temporal gaps in coverage. Here, we present a new approach to assess the ability of ice-sheet models which makes use of the internal layering of the Antarctic Ice Sheet. We simulate observed isochrone elevations within the Antarctic Ice Sheet via passive Lagrangian tracers, highlighting that a good fit of the model to two dimensional datasets does not guarantee a good match against the three dimensional architecture of the ice-sheet and thus correct evolution over time. We show, that paleoclimate forcing schemes commonly used to drive ice-sheet models work well in the interior of the Antarctic Ice Sheet and especially along ice divides, but fail towards the ice-sheet margin. The comparison to isochronal horizons attempted here reveals, that simple heuristics of basal drag can lead to an overestimation of the vertical interior ice sheet flow especially over subglacial basins. Our model-observation intercomparison approach opens a new avenue to the improvement and tuning of current ice-sheet models via a more rigid constraint on model parameterisations and climate forcing which will benefit model-based estimates of future and past ice-sheet changes.

How to cite: Sutter, J., Fischer, H., and Eisen, O.: Investigating the internal structure of the Antarctic Ice Sheet: the utility of isochrones for spatio-temporal ice sheet model calibration, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9446, https://doi.org/10.5194/egusphere-egu21-9446, 2021.

Displays

Display file