Quantification of methane emissions from offshore oil & gas platforms in the Norwegian Sea

Amy Foulds1 and the North Sea Methane Team*
1The University of Manchester, Centre for Atmospheric Science, School of Earth and Environmental Sciences, Manchester, United Kingdom of Great Britain - England, Scotland, Wales (amy.foulds@manchester.ac.uk)
*A full list of authors appears at the end of the abstract

Atmospheric methane (CH4) is an extremely potent greenhouse gas, with ever-increasing global emissions expected to have a significant influence on the Earth's climate. The Oil and Gas sector is considered to be a significant source of CH4 to the atmosphere, estimated to make up approximately 22% of global emissions. Offshore facility emissions are poorly ground-truthed, with their quantification being heavily dependent on “bottom-up” scaling of inventory data. It is therefore important to devise reliable methods for locating these emissions and to pinpoint their sources, as this will aid emission quantification and validation against reported data.

As part of the United Nations Climate and Clean Air Coalition (UN CCAC) project, this study aims to characterise CH4 emissions from oil and gas infrastructure in the Norwegian Sea. The campaign comprised surveys of selected operational oil and gas platforms in this region and included targeted observations of CH4. These surveys were conducted by the Facility of Airborne Atmospheric Measurements (FAAM) and Scientific Aviation Mooney research aircrafts in July and August 2019, with a total 14 flights. Fluxes are derived using a mass balance approach and aircraft sampling. The Lagrangian particle dispersion model “FLEXPART” is used to aid the attribution of the observed CH4 emissions to the platform(s). We will present results for derived fluxes and uncertainties for individual facilities in the Norwegian Sea. These fluxes will be compared with emissions estimates from platform operators, as well as a global, gridded emission inventory.

North Sea Methane Team: Grant Allen (Department of Earth & Environmental Sciences, University of Manchester, Manchester, United Kingdom) Jacob Shaw (Department of Earth & Environmental Sciences, University of Manchester, Manchester, United Kingdom) Prudence Bateson (Department of Earth & Environmental Sciences, University of Manchester, Manchester, United Kingdom) Patrick Barker (Department of Earth & Environmental Sciences, University of Manchester, Manchester, United Kingdom) Langwen Huangc (Department of Earth & Environmental Sciences, University of Manchester, Manchester, United Kingdom) James Lee (Wolfson Atmospheric Chemistry Laboratories, School of Chemistry, University of York, United Kingdom) Shona Wilde (Wolfson Atmospheric Chemistry Laboratories, School of Chemistry, University of York, United Kingdom) Pamela Dominutti (Wolfson Atmospheric Chemistry Laboratories, School of Chemistry, University of York, United Kingdom) Ruth Purvis (Wolfson
Atmospheric Chemistry Laboratories, School of Chemistry, University of York, United Kingdom)
David Lowry (Royal Holloway, University of London, Egham, United Kingdom) James France (Royal
Holloway, University of London, Egham, United Kingdom) Rebecca Fisher (Royal Holloway,
University of London, Egham, United Kingdom) Magdalena Puehl (German Aerospace Centre (DLR)
Oberpfaffenhofen, Institute of Atmospheric Physics, Wessling, Germany) Anke Roiger (German
Aerospace Centre (DLR) Oberpfaffenhofen, Institute of Atmospheric Physics, Wessling, Germany)
Alina Fiehn (German Aerospace Centre (DLR) Oberpfaffenhofen, Institute of Atmospheric Physics,
Wessling, Germany) Stephen Conley (Scientific Aviation Inc., Boulder, CO, United States) Mackenzie
Smith (Scientific Aviation Inc., Boulder, CO, United States) Tom Lachlan-Cope (NERC British
Antarctic Survey, Cambridge, United Kingdom) Ignacio Pisso (Norwegian Institute for Air Research,
Kjeller, Norway) Stefan Schwietzke (Environmental Defense Fund, Berlin, Germany) Daniel Zavala
Araiza (Environmental Defense Fund, Washington, D.C., United States)