EGU21-9581
https://doi.org/10.5194/egusphere-egu21-9581
EGU General Assembly 2021
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Anticipating cascading risks at the imminent Hochvogel peak failure

Johannes Leinauer, Manfred Meindl, Benjamin Jacobs, Verena Stammberger, and Michael Krautblatter
Johannes Leinauer et al.
  • Technical University Munich, Chair of Landslide Research, Department of Civil Geo and Environmental Engineering, München, Germany (johannes.leinauer@tum.de)

Climatic changes are exacerbating the risk of alpine mass movements for example through more frequent and extreme heavy precipitation events. To cope with this situation, the monitoring, anticipation, and early warning of rock slope failures based on process dynamics is a key strategy for alpine communities. However, only investigating the release area of an imminent event is insufficient, as the primary hazard can trigger or increase secondary hazards like debris flows or the damming of a river. Nevertheless, recent case studies dealing with successive hazards are rarely existent for the Calcareous Alps. In this study, we precisely investigate the cascading effects resulting from an imminent rock fall and perform a pre-event analysis instead of back-modelling of a past event.

The Hochvogel summit (2592 m a.s.l., Allgäu Alps, Germany/Austria) is divided by several pronounced clefts that separate multiple instable blocks. 3D-UAV point clouds reveal a potentially instable mass of 260,000 m³ in six main subunits. From our near real time monitoring system (Leinauer et al. 2020), we know that some cracks are opening at faster pace and react differently to heavy rainfall, making a successive failure of subunits likely. However, pre-deformations are not yet pronounced enough to decide on the exact expected volume whereas secondary effects are likely as the preparing rock fall mass will be deposited into highly debris-loaded channels. Therefore, we developed different rock fall scenarios from the gathered monitoring information, which we implemented into a RAMMS modelling of secondary debris flows. To obtain best- and worst-case results, each scenario is calculated with different erosion parameters in the runout channel. The models are calibrated with a well-documented debris flow event at Roßbichelgraben (10 km NW and similar lithology) and are supported by field investigations in the runout channel including electrical resistivity tomography profiles (ERT) for determination of the depth of erodible material as well as a drone survey for mapping the area and the generation of an elevation model.

Here we show a comprehensive scenario-based assessment for anticipating cascading risks at the Hochvogel from initial rock failure volume estimation to debris flow evolution and potential river damming. This recent case study from an alpine calcareous peak is an excellent and rare chance to gain insights into cascading risks modelling and an improved hazard evaluation.

How to cite: Leinauer, J., Meindl, M., Jacobs, B., Stammberger, V., and Krautblatter, M.: Anticipating cascading risks at the imminent Hochvogel peak failure, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9581, https://doi.org/10.5194/egusphere-egu21-9581, 2021.

Displays

Display file