Novel machine-learning based cloud mask and its application for Antarctic polynya monitoring using MODIS thermal-infrared imagery

Stephan Paul1,2 and Marcus Huntemann3
1Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Sea-Ice Physics, Bremerhaven, Germany (stephan.paul@awi.de)
2Deutsches Geodätisches Forschungsinstitut (DGFI), Technical University Munich, Munich, Germany
3Department of Environmental Physics, University of Bremen, Bremen, Germany

The frequent presence of cloud cover in polar regions limits the use of the Moderate-Resolution Imaging Spectroradiometer (MODIS) and similar instruments for the investigation and monitoring of sea-ice polynyas compared to passive-microwave-based sensors. The very low thermal contrast between present clouds and the sea-ice surface in combination with the lack of available visible and near-infrared channels during polar nighttime results in deficiencies in the MODIS cloud mask and dependent MODIS data products. This leads to frequent misclassifications of i) present clouds as sea ice/open water (false-negative) and ii) open-water/thin-ice areas as clouds (false-positive), which results in an underestimation of actual polynya area and subsequent derived information.

Here, we present a novel machine-learning based approach using a deep neural network that is able to reliably discriminate between clouds, sea-ice, and open-water/thin-ice areas in a given swath solely from thermal-infrared MODIS channels and derived additional information. Compared to the reference MODIS sea-ice product for the year 2017, our data results in an overall increase of 20% in annual swath-based coverage for the Brunt Ice Shelf polynya, attributed to an improved cloud-cover discrimination and the reduction of false-positive classifications. At the same time, the mean annual polynya area decreases by 44% through the reduction of false-negative classifications of warm clouds as thin ice. Additionally, higher spatial coverage results in an overall better sub-daily representation of thin-ice conditions that cannot be reconstructed with current state-of-the-art cloud-cover compensation methods.