Dynamics and sustainability of the Maya socio-ecosystem of the hinterland of Naachtun, between 1500 BCE and 1000 CE (Southern Maya Lowlands, Petén, Guatemala).

Cyril Castanet1, Philippe Nondédéo2, Lydie Dusso3, Marc Testé4, Louise Purdu5, Julien Hiquet5, Eva Lemonnier6, Aline Garnier7, Antoine Dorison9, Noémie Tomadini8, Sandrine Grouard8, Hemmamuthé Goudiaby9, Carlos Morales-Aguilar9, Nicole Limondin-Lozouet7, Julien Cavero9, Anne-Lise Develle-Vincent10, Christine Hatté11, Philippe Lanos12, Fatima Mokadem9, and György Sipos13

1Laboratoire de Géographie Physique, Environnements quaternaires et actuels (UMR CNRS 8591 LGP), Université Paris 8 Vincennes Saint-Denis, France (cyril.castanet@lgp.cnrs.fr)
2Laboratoire Archéologie des Amériques, ARCHAM UMR CNRS 8096, France
3Laboratoire Cultures et Environnements. Préhistoire, Antiquité, Moyen Âge, CEPAM UMR CNRS 7264, France
4Laboratoire de Géographie Physique, environnements quaternaires et actuels, LGP UMR CNRS 8591 Université Paris 1 Panthéon Sorbonne, France
5Laboratoire Archéologie des Amériques, ARCHAM UMR CNRS 8096 Université Paris 1 Panthéon Sorbonne, France
6Université Paris 1 Panthéon Sorbonne Laboratoire Archéologie des Amériques, ARCHAM UMR CNRS 8096, France
7Université Paris-Est Créteil, UPEC Laboratoire de Géographie Physique, environnements quaternaires et actuels, LGP UMR CNRS 8591, France
8Muséum National d'Histoire Naturelle Laboratoire Archéozoologie - Archéobotanique. Sociétés, pratiques et environnements, AASPE UMR CNRS 7209, France
9Laboratoire de Géographie Physique, environnements quaternaires et actuels, LGP UMR CNRS 8591, France
10Laboratoire Environnements, DYnamiques et TErritoires de la Montagne, EDYTEM UMR CNRS 5204, France
11Laboratoire des Sciences du Climat et de l’Environnement, LSCE UMR 8212 CEA, CNRS, UVSQ, France
12CNRS, UMR 5060 IRAMAT-CRP2A, Université Bordeaux-Montaigne et UMR 6118 Géosciences-Rennes, Université Rennes 1, France
13University of Szeged, Department of Physical Geography and Geoinformatics, Laboratory OSL Hungary LTD

In the Southern Maya Lowlands (SML), several scientific and technical obstacles hinder the knowledge of environmental and socio-environmental dynamics, that have occurred at the scale of the territories of the cities. This includes the research topic itself (nature-culture interface), the tropical forest (morphological studies and access to the field) and the morphological and sedimentary archives (taphonomy and discontinuity). The study of the socio-ecosystem of Naachtun (150-950 CE), a Maya city of the Classic period, is not exempt from these constraints. Recently, large-scale work in SML was conducted based on LiDAR analyses and fieldwork. They have profoundly renewed our knowledge of the complexity of landscape transformation and natural environments through the action of the ancient Maya (Canuto et al. 2018). They have provided new research perspectives which allow us to examine the following questions.

How did natural resource availability (water, soil and biological resources) change in the territory
of the city, with respect to climate change and social demand? How did the ancient Maya adapt their resource management strategies to these changes? How important were socio-environmental risks to the resilience and sustainability of the socio-ecosystem? In order to answer these questions, a new systemic, interdisciplinary and multiscalar research program has been implemented. It includes geoarchaeology (alluvial and agrarian), archaeogeography (LiDAR analysis, spatial analysis), palaeoecology and bioarchaeology [archaeobotany (study of phytoliths, anthrocolgy, pedoanthracology) zooarchaeology (vertebrate and conchyological fauna remains)], spatial archaeology (agglomeration processes, power relays), palaeodemography and geochronology (14C, OSL). Current and pre-anthropic reference frames (hydrological, pedological and ecological) have also been established.

Our results reaveal the complexity of the Maya palimpsest territories produced during the ~1500 BCE - 1000 CE period (Preclassic and Classic periods). Hydrosedimentary flows have fluctuated in response to climate change and anthropogenic impacts, controlling the spatiotemporal dynamics of resources (water and soils). Lake levels and erosion have fluctuated according to pluricentennial-scale periods. All compartments of the hydrosystem and the sediment system were subject to transformations, to manage water and soils. A mosaic of agricultural and agroforestry strategies was developed throughout the micro-region (morphologies, practices, cropping systems, fuel economy). Intensive wetland systems and irrigated farming systems were established in poljes, sinkholes and valleys (raised fields and drained fields). In addition, in the hilly areas, agrarian systems based on terraced agriculture, rain-fed farming systems, slash-and-burn, arboriculture and horticulture systems were established. The Maya socio-ecosystem which emerged in this micro-region lasted for more than 2500 years. It experienced shits and continuities and its dynamics are framed around six main multi-secular periods. Its decline was part of the profound changes that took place in the territories of the SML cities between 750 and 1050 CE. The sustainability of this socio-ecosystem during the demographic peak of the Late and Terminal Classic (750-950 CE), before the abandonment of the epicenter of the city of Naachtun (~950 CE), is estimated and discussed in relation to the environmental carrying capacity, social demand, climate and its own resilience.