EGU21-9989, updated on 22 Dec 2023
https://doi.org/10.5194/egusphere-egu21-9989
EGU General Assembly 2021
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

A New Pacific Influence on the Atlantic Meridional Overturning Circulation

Leon Hermanson, Doug Smith, Nick Dunstone, and Rosie Eade
Leon Hermanson et al.
  • Met Office, Exeter, United Kingdom of Great Britain – England, Scotland, Wales (leon.hermanson@metoffice.gov.uk)

The Atlantic Meridional Overturning Circulation (AMOC) at 26N has been measured since 2004 by the RAPID-MOCHA array. On a multi-year timescale it shows a decline with signs of a recovery since around 2012. This variability is likely to be part of longer decadal variability. We examine here the decadal variability of the AMOC and its drivers in a coupled model run nudged to observations from 1960-2017. Temperature and winds are nudged throughout the atmosphere and potential temperature and salinity are nudged in the ocean, but the ocean velocities are allowed to vary freely. We nudge an ensemble of 10 ocean analyses into the ocean model to get an ensemble of responses, the mean of which reproduces the observed AMOC. We use these ocean-atmosphere re-analyses to study the drivers of the AMOC. The North Atlantic Oscillation (NAO) is well known to have an impact on the AMOC and is an important driver here. We find that the tropical Pacific also has a strong impact on the subtropical AMOC on multi-annual to decadal timescales. Together these two factors can explain more than half of all variability of the AMOC at 26N through wind forcing associated with Rossby waves and western boundary waves. This Pacific impact, not reported on before, is from windstress curl anomalies close to the East Coast of the southern US due to changes in the Pacific storm track and the Walker Circulation. As both the NAO and tropical Pacific variability is associated with solar and volcanic forcing, it is possible that solar and volcanic forcing are important for multi-annual to multi-decadal AMOC variability. We use observations of the NAO and tropical Pacific to reconstruct the AMOC from 1870 to present day and predict a continued recovery in the future.

How to cite: Hermanson, L., Smith, D., Dunstone, N., and Eade, R.: A New Pacific Influence on the Atlantic Meridional Overturning Circulation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9989, https://doi.org/10.5194/egusphere-egu21-9989, 2021.

Displays

Display file