SC4.5

Nonlinear Processes in Geosciences: past methods and novel approaches

Most often observations and measurements of geophysical systems and dynamical phenomena are obtained as time series whose dynamics usually manifests a nonlinear behavior. During the past decades, nonlinear approaches in geosciences have rapidly developed to gain novel insights on fluid dynamics, greatly improving weather forecasting, on turbulence and stochastic behaviors, on the development of chaos in dynamical systems, and on concepts of networks, nowadays frequently employed in climate research.

In this short course, we will offer a broad overview of the development and application of nonlinear concepts across the geosciences in terms of recent successful applications from various fields, ranging from climate to solar-terrestrial relations. The focus will be on a comparison between different methods to investigate various aspects of both known and unknown physical processes, moving from past accomplishments to future challenges.

Public information:
Speakers and topics

Peter Ditlevsen: "The climate history as a time series: How do we dissect it?"
Tommaso Alberti: "A voyage through scales: the myth of turbulence"
Reik Donner: "Internal versus forced variability: Complexity and causality perspectives on space weather"
Co-organized by CL6/EMRP2/NH11/ST2
Convener: Tommaso AlbertiECSECS | Co-conveners: Peter Ditlevsen, Reik Donner
Wed, 28 Apr, 10:00–11:00 (CEST)
Public information:
Speakers and topics

Peter Ditlevsen: "The climate history as a time series: How do we dissect it?"
Tommaso Alberti: "A voyage through scales: the myth of turbulence"
Reik Donner: "Internal versus forced variability: Complexity and causality perspectives on space weather"

Speakers

  • Tommaso Alberti, Istituto Nazionale di Astrofisica, Italy
  • Peter Ditlevsen, University of Copenhagen, Denmark
  • Reik Donner, Magdeburg-Stendal University of Applied Sciences, Germany