Union-wide
Inter- and Transdisciplinary Sessions
Disciplinary sessions AS–GM
Disciplinary sessions GMPV–TS

Session programme

AS

AS – Atmospheric Sciences

Programme group chair: Athanasios Nenes

MAL2
AS 2020/2021 Vilhelm Bjerknes Medal Lectures, 2020 Division Outstanding ECS Award Lecture & 2021 Arne Richter Award for Outstanding ECS Lecture
Convener: Athanasios Nenes
Presentations
| Mon, 19 Apr, 15:00–17:00 (CEST)
MAL1b
EGU 2020/2021 Alfred Wegener Medal Lectures
Conveners: Alberto Montanari, Helen Glaves
Presentations
| Wed, 21 Apr, 11:30–14:30 (CEST)
NET7

Public information:
please use the zoom link for NET25 'AS-event for all division members'

Quiz & Stretch!
Everyone is welcome to join this event! This event includes two parts of activities:
1. Quiz! (20min) The most challenging questions about atmospheric science and geoscience ever! Top 5 winners can feature their research/life/family/etc on Twitter @EGU_Atmos (with >1800 followers)!
2. Stretch! (30 min) The yoga instructor Silvia will teach us some easy movements to stretch our body and relax from the vEGU21! More about Silvia: www.siyoga.org/; Her Youtube channel: www.youtube.com/channel/UC2FumD-2SmFTEUBlyitkC9A; Facebook: http://facebook.com/siyoga2020
Join us and you will get mentally and physically relaxed!
Convener: Mengze Li
Wed, 21 Apr, 18:00–19:00 (CEST)
NET25
AS-event for all division members
Conveners: Mengze Li, Athanasios Nenes
Wed, 21 Apr, 18:00–19:00 (CEST)

AS1 – Meteorology

Programme group scientific officers: Athanasios Nenes, Annica Ekman

AS1.1 EDI

In weather prediction and climate modelling, numerical models of the Earth System are used extensively. For both the atmosphere and ocean components such models consist of a fluid dynamics solver (dynamical core) coupled to physical parameterizations to represent processes that occur below the grid scale (physics). Over time these models have become capable of sophisticated simulations. Research and development is constantly being undertaken to improve the accuracy and efficiency of the dynamical core, the physics, and their coupling.

This session encompasses the development, testing and application of novel numerical techniques for Earth system models, including governing equations, horizontal and vertical discretizations, structure preserving methods, time stepping schemes, advection schemes, adaptive multi-scale models, physics-dynamics coupling, regional and global models, classical and stochastic physical parameterizations (that are not covered in other sessions).

Co-organized by CL5.2
Convener: Werner Bauer | Co-conveners: Christian Kühnlein, Jemma Shipton, Hiroe Yamazaki
vPICO presentations
| Tue, 27 Apr, 09:00–10:30 (CEST)
AS1.2

The session welcomes papers on:

1) Forecasting and simulating high impact weather events - research on improvement of high-resolution numerical model prediction of severe weather events (such as winter storms, tropical storms, and severe mesoscale convective storms) using data from various observational platforms, evaluation of the impact of new remote sensing data;

2) Development and improvement of model numerics - basic research on advanced numerical techniques for weather and climate models (such as cloud resolving global model and high-resolution regional models specialized for extreme weather events on sub-synoptic scales);

3) Development and improvement of model physics - progress in research on advanced model physics parametrization schemes (such as stochastic physics, air-wave-oceans coupling physics, turbulent diffusion and interaction with the surface, sub-grid condensation and convection, grid-resolved cloud and precipitation, land-surface parametrization, and radiation);

4) Model evaluation - verification of model components and operational NWP products against theories and observations, regional and global re-analysis of past observations, diagnosis of data assimilation systems;

5) Data assimilation systems - progress in the development of data assimilation systems for operational applications (such as reanalysis and climate services), research on advanced methods for data assimilation on various scales (such as treatment of model and observation errors in data assimilation, and observational network design and experiments);

6) Ensemble forecasts and predictability - strategies in ensemble construction, model resolution and forecast range-related issues, and applications to data assimilation;

7) Advances and challenges in high-resolution simulations and forecasting.

Convener: Haraldur Ólafsson | Co-convener: Jian-Wen Bao
vPICO presentations
| Mon, 26 Apr, 11:00–12:30 (CEST), 13:30–15:00 (CEST)
AS1.3

Forecasting the weather, in particular severe and extreme weather has always been the most important subject in meteorology. This session will focus on recent research and developments on forecasting techniques, in particular those designed for operations and impact oriented. Contributions related to nowcasting, meso-scale and convection permitting modelling, ensemble prediction techniques, and statistical post-processing are very welcome.
Topics may include:
 Nowcasting methods and systems, use of observations and weather analysis
 Mesoscale and convection permitting modelling
 Ensemble prediction techniques
 Ensemble-based products for severe/extreme weather forecasting
 Seamless deterministic and probabilistic forecast prediction
 Post-processing techniques, statistical methods in prediction
 Use of machine learning, data mining and other advanced analytical techniques
 Impact oriented weather forecasting
 Presentation of results from relevant international research projects of EU, WMO, and EUMETNET etc.

Co-organized by NH1
Convener: Yong Wang | Co-conveners: Jing Chen, Ken Mylne, David Richardson, Guido Schröder
vPICO presentations
| Mon, 26 Apr, 15:30–17:00 (CEST)
AS1.4 EDI

This session invites contributions that span all aspects of prediction and predictability in the 2 weeks to 2 months lead time range. The session welcomes contributions on physical processes, impacts, and climate services. In particular, we encourage studies of phenomena such as the Madden Julian Oscillation (MJO), tropical/extratropical waves, teleconnections, stratosphere - troposphere coupling, land - atmosphere coupling, ocean - atmosphere coupling, in addition to studies of predictability and skill of atmospheric or surface variables such as sea ice, snow cover, and land surface, and case studies of extreme or high impact weather events. Contributions regarding impact studies, applications, and climate services at the S2S time-scale are also highly welcome, including, but not limited to, the areas of hydrology, health, fire, agriculture, and energy. These can include modeling studies of the impacts and presentations of how S2S-derived information can be integrated into decision support systems at the local, regional and country level.

Convener: Daniela Domeisen | Co-conveners: Francesca Di Giuseppe, A.G. MuñozECSECS, Frederic Vitart, Christopher White
vPICO presentations
| Fri, 30 Apr, 09:00–12:30 (CEST)
AS1.5

The understanding of tropical phenomena and their representation in numerical models still raise important scientific and technical questions, particularly in the coupling between the dynamics and diabatic processes. Among these phenomena, tropical cyclones (TC) are of critical interest because of their societal impacts and because of uncertainties in how their characteristics (cyclogenesis processes, occurrence, intensity, latitudinal extension, translation speed) will change in the framework of global climate change. The monitoring of TCs, their forecasts at short to medium ranges, and the prediction of TC activity at extended range (15-30 days) and seasonal range are also of great societal interest.

The aim of the session is to promote discussions between scientists focusing on the physics and dynamics of tropical phenomena. This session is thus open to contributions on all aspects of tropical meteorology between the convective and planetary scale, such as:
- Tropical cyclones,
- Convective organisation,
- Diurnal variations,
- Local circulations (i.e. island, see-breeze, etc.),
- Monsoon depressions,
- Equatorial waves and other synoptic waves (African easterly waves, etc.),
- The Madden-Julian oscillation,
- etc.
We especially encourage contributions of observational analyses and modelling studies of tropical cyclones and other synoptic-scale tropical disturbances including the physics and dynamics of their formation, structure, and intensity, and mechanisms of variability of these disturbances on intraseasonal to interannual and climate time scales.
Findings from recent field campaigns are also encouraged.

Convener: Enrico Scoccimarro | Co-conveners: Jean Philippe Duvel, Eric Maloney, Kevin Reed, Allison Wing
vPICO presentations
| Wed, 28 Apr, 09:00–12:30 (CEST)
AS1.6 EDI

This session investigates mid-latitude cyclones and storms on both hemispheres. We invite studies considering cyclones in different stages of their life cycles from the initial development, to large- and synoptic-scale conditions influencing their growth to a severe storm, up to their dissipation and related socioeconomic impacts.
Papers are welcome, which focus also on the diagnostic of observed past and recent trends, as well as on future storm development under changed climate conditions. This will include storm predictability studies on different scales. Finally, the session will also invite studies investigating impacts related to storms: Papers are welcome dealing with vulnerability, diagnostics of sensitive social and infrastructural categories and affected areas of risk for property damages. Which risk transfer mechanisms are currently used, depending on insured and economic losses? Which mechanisms (e.g. new reinsurance products) are already implemented or will be developed in order to adapt to future loss expectations?

Co-organized by NH1
Convener: Gregor C. Leckebusch | Co-conveners: Jennifer Catto, Joaquim G. Pinto, Uwe Ulbrich
vPICO presentations
| Fri, 30 Apr, 13:30–15:00 (CEST)
CL4.19 EDI

The large-scale atmospheric circulation strongly influences Earth's climate, both locally and globally, via its transport of energy, moisture, and momentum. While our ability to simulate the global circulation is improving, large model biases and uncertainties in climate change projections persist. Our theoretical understanding of how atmospheric circulations respond to climate changes is also limited, particularly on regional scales and in the presence of zonal asymmetries. Advancing our knowledge of the underlying dynamics is therefore crucial for reliable climate projections and for correctly interpreting palaeoclimate records.

The objective of this session is to advance our mechanistic understanding of atmospheric circulation changes and to analyse their impacts at global and regional scales, specifically on precipitation in past, present, and future climates. We encourage theoretical, observational and modelling contributions on tropical (ITCZ, monsoons, Hadley & Walker circulations, MJO) and extratropical circulations (jet streams, storm tracks, blocking).

Public information:
To facilitate general discussion during the session, we have prepared a shared etherpad document that you can use to comment and ask questions in real time. Link here:
https://mypads2.framapad.org/mypads/?/mypads/group/egu-2021-7829819s1/pad/view/atmospheric-dynamics-cl4-19-0l29c19wm
Co-organized by AS1
Convener: Michael ByrneECSECS | Co-conveners: Thomas Birner, Nicholas LutskoECSECS, Talia TamarinECSECS
vPICO presentations
| Thu, 29 Apr, 14:15–17:00 (CEST)
AS1.8

The variability in the stratosphere is important for many atmospheric phenomena. Examples include the dynamical two-way coupling between the stratosphere and troposphere during sudden stratospheric warming events, the transport of trace gases through the meridional circulation of the stratosphere, or the connection between the Quasi-Biennial Oscillation of the tropical stratosphere and the Madden-Julian Oscillation. This session is interested in all aspects of stratospheric circulation variability, including the mechanisms behind the vertical coupling between the stratosphere and troposphere in tropics and extratropics, the importance of stratospheric dynamics for explaining both short-term atmospheric weather and long-term climate variability, and the role of the stratospheric circulation for the chemical composition of the atmosphere. We welcome abstracts that study this problem from an observational, modelling, or theoretical viewpoint on all temporal and spatial scales.

Convener: Thomas Reichler | Co-conveners: Blanca Ayarzagüena, Bo Christiansen, Seok-Woo Son
vPICO presentations
| Tue, 27 Apr, 13:30–17:00 (CEST)
AS1.9 EDI

Recent extreme weather and climate episodes, including the Siberian heatwave of early summer 2020 and the cold-air outbreak over the US in late summer 2020, highlight the need to further our understanding of linear and non-linear (quasi-stationary) planetary and synoptic-scale Rossby wave dynamics in the atmosphere, and their impacts on weather and climate events. Abstracts are solicited that are dedicated to:

i) the dynamics of linear wave propagation or quasi-stationarity, of wave breaking, atmospheric blocking, or jets as atmospheric Rossby waveguides. This includes the role of local and remote drivers (e.g., the tropics, Arctic, or stratosphere).

ii) exploring the links between extreme weather/climate events and linear and non-linear Rossby waves, including wave breaking and/or blocking.

iii) quantifying model representation of Rossby waves in climate and numerical weather prediction models, including wave propagation and breaking.

iv) exploring the role of Rossby wave trains on predictability at lead times from medium range (~2 weeks) to seasonal time-scales. This includes blocking and wave propagation.

v) analyzing projected future changes in planetary or synoptic-scale Rossby waves, or in their future impacts on weather and climate events.

Co-organized by NP7
Convener: Kai KornhuberECSECS | Co-conveners: Olivia Martius, Rachel White, Volkmar Wirth
vPICO presentations
| Wed, 28 Apr, 13:30–17:00 (CEST)
AS1.10 EDI

The global monsoon system and its regional monsoon components have profound impacts on society and are among the most complex phenomena involving coupled atmosphere-ocean-land interactions. Monsoons can cause severe floods and droughts in the tropics as well as undergoing climate variability on subseasonal, interannual and decadal or longer time scales. In addition to its profound local effects, monsoon variability is also associated with global-scale impacts since the energy released by monsoon systems can influence the global circulation. However, it is notoriously difficult to simulate and forecast the monsoons on temporal scales from numerical weather prediction (NWP), subseasonal-to-seasonal and interannual-to-decadal predictions, and longer timescale climate projections. A better understanding of monsoon physics and dynamics, with more accurate simulation, prediction and projection of monsoon systems is therefore of a great importance to society.

The combination of modern- and palaeo-monsoon research can help us better understand the fundamental nature of the monsoon and its variability. Comparisons of monsoon responses to large-scale forcings found in the palaeoclimate record can help us to understand how the monsoon will respond to changes in forcings in the future, potentially allowing us to constrain estimates of climate change. Similarly, the wealth of observations, reanalysis products and modelling work in the contemporary period can help us piece together data from point-proxy records of the past.

This session therefore invites presentations on all aspects of monsoon research in contemporary, future and palaeoclimate periods (observational, modeling, attribution, prediction and projection) from the natural and anthropogenic variability and predictability of the monsoon systems on multiple time scales, to the impact of monsoons on extreme weather and climate events (floods, droughts, tropical cyclones, heat waves, etc.), as well as the links between monsoons and global climate change and feedbacks with the biosphere. Theoretical works based on idealized planetary and ITCZ frameworks are also invited.

Convener: Jianping Li | Co-conveners: Roberta D'AgostinoECSECS, Kyung-Ja Ha, Pascal Terray, Andrew Turner
vPICO presentations
| Mon, 26 Apr, 09:00–10:30 (CEST)
AS1.11 EDI

As a weather pattern, the Asian monsoon impacts the lives of more than a billion people. With rapid population and economic growth across the monsoon region, it becomes a pressing concern that the convection coupled to surface emissions is playing a significant role in the region’s air quality. The uplift of pollutants also enhances aerosol–cloud interactions that may change the behaviour of the monsoon. The monsoon system is therefore relevant to scales and processes bridging regional air quality, climate change, and global
chemistry-climate interaction and the chemical transport effect of the monsoon system is seen from satellites as an effective transport path for pollutants to enter the stratosphere.
The session will focus on the dynamical, micro-physical, and chemical processes dominating transport, chemical transformations and particle and cloud formation throughout the Upper-Troposphere Lower-Stratosphere above the Asian Monsoon system as well their internal and ozone and climate couplings. Here we especially encourage experimental and modelling (process to global) studies from recent programmes (such as StratoClim, BATAL, OMO). Contributions addressing tropospheric processes within the Atmospheric Composition and Asian Monsoon (ACAM) Programme objectives, such as the coupling to local emission on air quality and aerosols, clouds, interactions with the Asian monsoon are also welcome.

Convener: Federico Fierli | Co-conveners: Bhupesh Adhikary, Silvia BucciECSECS, Fred Stroh
vPICO presentations
| Thu, 29 Apr, 11:45–12:30 (CEST)
CL2.3

Large-scale atmospheric circulation dynamics are the major driver of near surface climatic and environmental variability. Synoptic climatology examines atmospheric circulation dynamics and their relationship with near surface environmental variables. Within synoptic climatological analyses, a wide variety of methods is utilized to characterize atmospheric circulation (e.g., circulation and weather type classification, regime analysis, teleconnection indices). Various linear and non-linear approaches (e.g., multiple regression, canonical correlation, neural networks) are applied to relate the circulation dynamics to diverse climatic and environmental elements (e.g., air temperature, air pollution, floods).

The session welcomes contributions from the whole field of synoptic climatology. This includes application studies for varying regions, time periods (past, present, future) and target variables and in particular contributions on the development and the comparison of methods (e.g., varying circulation type classifications) and conceptual approaches (e.g., circulation types versus circulation regimes).

Co-organized by AS1
Convener: Christoph Beck | Co-conveners: Andreas Philipp, Pedro M. Sousa, Jan Stryhal
vPICO presentations
| Tue, 27 Apr, 15:30–17:00 (CEST)
AS1.13 EDI

The infrasound field, the science of low-frequency acoustic waves, has developed into a broad interdisciplinary field encompassing academic disciplines of geophysics and recent technical and scientific developments. The infrasound network of the International Monitoring Network (IMS) for nuclear test ban verification and regional cluster arrays deployed around the globe have demonstrated their capacity for detecting and locating most of the disturbances in the atmosphere. Infrasound is capable of traveling up to thermospheric altitudes and over enormous ranges, where its propagation is controlled by the wind and temperature structure. Recent studies point out new insights on quantitative relationships between observables and atmospheric characteristics, and therefore opening a new field for atmospheric remote sensing.

New studies using lidar, radar, microwave spectrometer and mesospheric airglow observations complemented by satellite measurements help to better determine the interaction between atmospheric layers from the ground to the mesosphere and the influence of atmospheric waves on the mean flow. It is expected that further developing multi-instruments platforms would improve gravity wave parameterizations and enlarge the science community interested by operational infrasound monitoring. The ARISE project, funded by the European Commission, coordinates such studies. It proposes to design a novel infrastructure that integrates different atmospheric observation networks to infer a new 3D image of the atmosphere from the ground to mesosphere. In a higher frequency range, this monitoring system also offers a unique opportunity to provide in near-real time continuous relevant information about natural hazards with high societal benefits, like large volcanic eruptions, surface earthquakes or meteorites.

We invite contributions on current studies on sensors, characterization of different sources and large scale atmospheric phenomena, characterization of phenomena which affect acoustic propagation, utilization of acoustic waves to probe the atmosphere, contribution of gravity and planetary waves to the atmospheric dynamics and the coupling of atmospheric layers. In the session, we will also consider the role that infrasound and acoustic-gravity waves play in the coupled Earth’s crust – ocean – atmosphere system and, in particular, in ionospheric manifestations of physical processes in the ocean and in the solid Earth.

Convener: Alexis Le Pichon | Co-conveners: Elisabeth Blanc, Läslo G. Evers, Oleg Godin, Alain Hauchecorne
vPICO presentations
| Mon, 26 Apr, 09:00–12:30 (CEST)
AS1.14 EDI

Internal gravity waves (IGWs) still pose major questions both to the atmospheric and ocean sciences, and to stellar physics. Important issues are IGW radiation from their various relevant sources, IGW reflection at boundaries, their propagation through and interaction with a larger-scale flow, wave-induced mean flow, wave-wave interactions in general, wave breaking and its implications for mixing, and the parameterization of these processes in models not explicitly resolving IGWs. The observational record, both on a global scale and with respect to local small-scale processes, is not yet sufficiently able to yield appropriate constraints. The session is intended to bring together experts from all fields of geophysical and astrophysical fluid dynamics working on related problems. Presentations on theoretical, modelling, experimental, and observational work with regard to all aspects of IGWs are most welcome, including those on major collaborative projects, such as MS-GWaves.

Co-organized by NP7/OS4
Convener: Claudia Stephan | Co-conveners: Ulrich Achatz, Alvaro de la Camara, Riwal Plougonven, Chantal Staquet
vPICO presentations
| Mon, 26 Apr, 13:30–17:00 (CEST)
CL2.13

ENSO and its interactions with other tropical basins are the dominant source of interannual climate variability in the tropics and across the globe. Understanding the dynamics, predictability, and impacts of ENSO and tropical basins interactions, and anticipating their future changes are thus of vital importance for society. This session invites contributions regarding all aspects of ENSO and tropical basins interactions, including: dynamics, multi-scale interactions; low frequency, decadal and paleo variability; theoretical approaches; ENSO diversity; global teleconnections; impacts on climate, society and ecosystems; seasonal forecasting and climate change projections of ENSO and its tropical basins interactions. Studies aimed at understanding ENSO and its tropical basins interactions in models of a range of complexity are especially welcomed, including analysis of CMIP model intercomparisons.

Co-organized by AS1/NP2/OS1
Convener: Dietmar Dommenget | Co-conveners: Antonietta Capotondi, Daniela Domeisen, Eric Guilyardi
vPICO presentations
| Fri, 30 Apr, 13:30–15:00 (CEST)
CL4.31

The Arctic sea ice and high latitude atmosphere and oceans have experienced significant changes over the modern observational era. The polar climate is crucial for the Earth’s energy and water budget, and its variability and change have direct socio-economic and ecological impacts. Thus, understanding high-latitude variability and improving predictions of high latitude climate is highly important for society. Long-term variability in ocean and sea ice are the largest sources for predictability in high latitudes. Dynamical model predictions are not yet in the position to provide us with highly accurate predictions of the polar climate. Main reasons for this are the lack of observations in high latitudes, insufficient initialization methods and shortcomings of climate models in representing some of the important climate processes in high latitudes.

This session aims for a better understanding and better representation of the mechanisms that control high latitude variability and predictability of climate in both hemispheres from sub-seasonal to multi-decadal time-scales in past, recent and future climates. Further, the session aims to discuss ongoing efforts to improve climate predictions at high latitudes at various time scales (as e.g. usage of additional observations for initialization, improved initialization methods, impact of higher resolution, improved parameterizations, novel verification approaches) and potential teleconnections of high latitude climate with lower latitude climate. We also aim to link polar climate variability and predictions to potential ecological and socio-economic impacts and encourage submissions on this topic.

The session offers the possibility to present results from ongoing projects and research efforts on the topic of high-latitude climate variability and prediction, including, but not limited to, the WMO Year of Polar Prediction (YOPP), NordForsk-project ARCPATH, MOSAiC, and the H2020-projects APPLICATE, INTAROS, BlueAction, and KEPLER.

Co-organized by AS1/CR7/OS1
Convener: Neven-Stjepan Fuckar | Co-conveners: Yongqi Gao (deceased), Helge Goessling, Torben Koenigk
vPICO presentations
| Fri, 30 Apr, 13:30–15:00 (CEST)
OS1.2 EDI

The North Atlantic exhibits a high level of natural variability from interannual to centennial time scales, making it difficult to extract trends from observational time series. Climate models, however, predict major changes in this region, which in turn will influence sea level and climate, especially in western Europe and North America. In the last years, several projects have been focused on the Atlantic circulation changes, for instance OVIDE, RACE, OSNAP, and ACSIS. Another important issue is the interaction between the atmosphere and the ocean as well as the cryosphere with the ocean, and how this affects the climate.

Please note that while we hope to hold a session in the traditional format, we anticipate that some part or all of the session may be held online.

We welcome contributions from observers and modelers on the following topics:

-- climate relevant processes in the North Atlantic region in the atmosphere, ocean, and cryosphere
-- response of the atmosphere to changes in the North Atlantic
-- atmosphere - ocean coupling in the North Atlantic realm on time scales from years to centuries (observations, theory and coupled GCMs)
-- interpretation of observed variability in the atmosphere and the ocean in the North Atlantic sector
-- Comparison of observed and simulated climate variability in the North Atlantic sector and Europe
-- Dynamics of the Atlantic meridional overturning circulation
-- variability in the ocean and the atmosphere in the North Atlantic sector on a broad range of time scales
-- changes in adjacent seas related to changes in the North Atlantic
-- role of water mass transformation and circulation changes on anthropogenic carbon and other parameters
-- linkage between the observational records and proxies from the recent past

Co-organized by AS1/CL4
Convener: Richard Greatbatch | Co-conveners: Caroline Katsman, Monika Rhein, Bablu Sinha
vPICO presentations
| Fri, 30 Apr, 11:00–17:00 (CEST)
AS1.18 EDI

Clouds and aerosols play a key role in climate and weather-related processes over a wide range of spatial and temporal scales. An initial forcing due to changes in the aerosol concentration and composition may also be enhanced or dampened by feedback processes such as modified cloud dynamics, surface exchange or atmospheric circulation patterns. This session aims to link research activities in observations and modelling of radiative, dynamical and microphysical processes of clouds and aerosols and their interactions. Studies addressing several aspects of the aerosol-cloud-radiation-precipitation system are encouraged. Contributions related to the EU project “Constrained aerosol forcing for improved climate projections (FORCeS) are also invited.

Topics covered in this session include, but are not limited to:
- Cloud and aerosol macro- and microphysical properties, precipitation formation mechanisms
- The role of aerosols and clouds for the radiative energy budget
- Observational constraints on aerosol-cloud interactions
- High-resolution modelling, including large-eddy simulation and cloud-resolving models
- Parameterization of cloud and aerosol microphysics/dynamics/radiation processes
- Use of observational simulators to constrain aerosols, clouds and their radiative effects in models
- Experimental cloud and aerosol studies
- Aerosol, cloud and radiation interactions and feedbacks on the hydrological cycle and the climate system
- Interactions between aerosols and regional circulation systems and precipitation patterns
- Influence of aerosols on the distribution and intensity of climate extremes

Convener: Edward GryspeerdtECSECS | Co-conveners: Annica Ekman, Geeta PersadECSECS, Anna PossnerECSECS
vPICO presentations
| Fri, 30 Apr, 09:00–15:00 (CEST)
AS1.19 EDI

Ice and mixed-phase clouds play an important role in the Earth’s radiation budget because of their high temporal and spatial coverage. Yet, the variability and complexity of their macro- and microphysical properties, the consequence of intricate ice particle nucleation and growth processes, makes their study extremely challenging. As a result, large uncertainties still exist in our understanding of ice cloud processes, their radiative effects, and their interaction with their environment (in particular, aerosols).

This session aims to advance our comprehension of ice clouds by bringing observation- and modelling-based research together.

A diversity of research topics shall be covered, highlighting recent advances in ice cloud observation techniques, modelling and subsequent process studies:

(1) Airborne, spaceborne, ground- or laboratory-based measurements and their derived products (retrievals), which are useful to constrain ice cloud properties like extent, emissivity, or crystal size distributions, to clarify formation mechanisms, and to provide climatology.

(2) Process-based, regional and global model simulations that employ observations for better representation of ice-cloud microphysical properties and radiative forcing under both current and future climate.

The synthesis of these approaches can uniquely answer questions regarding dynamical influence on ice cloud formation, life cycle, coverage, microphysical and radiative properties, crystal shapes, sizes and variability of ice particles in mixed-phase as well as ice clouds. Joint observation-modelling contributions are therefore particularly encouraged.

Convener: Odran SourdevalECSECS | Co-conveners: Ahmed Abdelmonem, Hinrich Grothe, Christian RolfECSECS, Sylvia SullivanECSECS
vPICO presentations
| Tue, 27 Apr, 13:30–15:00 (CEST)
AS1.20 EDI

While clouds are a crucial component of the global climate system, their representation in climate models is subject to considerable uncertainty. Predicting cloud phase, the amount of liquid and ice in the cloud, is critical for the correct representation of radiation processes and precipitation patterns. Yet, much of the uncertainty stems from the cloud ice phase, as ice formation processes are poorly understood and largely not described in the case of secondary ice production (SIP). In this session, we invite contributions from several fields (theoretical physics, laboratory experiments, field observations, remote sensing and multiscale modeling) that aim to: (i) understand secondary ice mechanisms, (ii) identify the conditions favorable for SIP, (iii) quantify SIP in relation to primary ice production, (iv) explore the impact of SIP on cloud life-cycle, radiation and/or precipitation, (v) investigate the interactions between SIP and atmospheric electricity, (vi) evaluate SIP representation in models and (vii) improve relevant parameterizations. Studies that link the importance of SIP within the context of deep convective systems, ground-cloud interactions (e.g. blowing snow), mountain, polar and marine systems are strongly encouraged.

Convener: Georgia SotiropoulouECSECS | Co-conveners: Paul DeMott, Corinna Hoose, Athanasios Nenes, Vaughan Phillips
vPICO presentations
| Thu, 29 Apr, 11:45–12:30 (CEST)
AS1.21 EDI

This session deals with atmospheric convection, being dry, shallow, or deep convection. Contributions on these aspects resulting from the use of large-eddy simulations, convection-permitting simulations, coarser-resolution simulations using parameterised convection and observations are welcome. Studies that investigate the organization of convection, being in idealized set-ups (radiative convective equilibrium and self-aggregation) or in observations, as well as studies that investigate the importance of organization for climate are particularly welcome. Besides this, studies that investigate general aspects of convection such as processes controlling the lifecycle of convection, interactions of convection with other physical processes and representation of convection in numerical weather prediction and climate models are also welcome.

Convener: Cathy Hohenegger | Co-conveners: Leo Donner, Adrian Tompkins, Holger Tost
vPICO presentations
| Wed, 28 Apr, 15:30–17:00 (CEST)
AS1.22 EDI

The uncertain response of clouds to global warming is a major contributor to the spread in climate sensitivity across climate models. Cloud feedback uncertainty is related to a limited understanding of the coupling between clouds, convection and the large-scale circulation across various spatial and temporal scales. This session focuses on efforts to advance our understanding of the cloud-circulation coupling and its role in climate change. Contributions from dedicated field campaigns such as EUREC4A, from various observing platforms like ground-based and satellite remote sensing or in situ measurements, as well as modelling and theoretical studies are welcomed. We also invite abstracts focusing on the role of convective organization and precipitation in modulating the cloud-circulation coupling and cloud feedbacks.

Convener: Raphaela VogelECSECS | Co-conveners: Claudia AcquistapaceECSECS, Leif DenbyECSECS, Marcus Klingebiel, Isabel L. McCoyECSECS
vPICO presentations
| Tue, 27 Apr, 11:00–15:00 (CEST)
AS1.23 EDI

Mesoscale convective systems (MCSs) and meso-scale storms/disturbances are known to be important precipitation producing/triggering systems in high-mountain environments and on high-altitude plateaus. These meso-scale convective systems and disturbances can lead to severe weather locally and affect lower lying downstream regions.

The aim of this session is to gain an improved understanding of meso-scale systems and the associated processes leading to (extreme) precipitation in mountain regions and/or their downstream areas. We invite contributions on the dynamics of meso-scale storms/disturbances and meso-scale convective systems (including their formation and evolution) as well as smaller-scale convection in connection to atmospheric meso-scale features and how these factors explain spatio-temporal patterns of precipitation and precipitation dynamics. Contributions focussing on individual extreme events or giving climatological perspectives are welcome. Due to the nature of high-mountain environments it is difficult to directly observe their meso-scale atmospheric features and link these to the occurrence and spatio-temporal variability of precipitation. Therefore, contributions integrating remote sensing data, in-situ observations, and high-resolution models, especially those that explicitly resolve convections are particularly welcome.

This session is connected to the recently launched WRCP-CORDEX flagship pilot study “High resolution climate modelling with a focus on mesoscale convective systems and associated precipitation over the Third Pole region”.

Convener: Julia CurioECSECS | Co-conveners: Deliang Chen, Kalli Furtado, Julia KukuliesECSECS
vPICO presentations
| Thu, 29 Apr, 11:45–12:30 (CEST)
NH1.6 EDI

Lightning is the energetic manifestation of electrical breakdown in the atmosphere, occurring as a result of charge separation processes operating on micro and macro-scales, leading to strong electric fields within thunderstorms. Lightning is associated with tropical storms and severe weather, torrential rains and flash floods. It has significant effects on various atmospheric layers and drives the fair-weather electric field. It is a strong indicator of convective processes on regional and global scales, potentially associated with climate change. Thunderstorms and lightning are also associated with the production of energetic radiation up to tens of MeV on time scales from sub-millisecond (Terrestrial Gamma-ray Flashes) to tens of seconds (gamma-ray glows).

This session seeks contributions from research in atmospheric electricity with emphasis on:

Atmospheric electricity in fair weather and the global electrical circuit
Effects of dust and volcanic ash on atmospheric electricity
Thunderstorm dynamics and microphysics
Middle atmospheric Transient Luminous Events
Energetic radiation from thunderstorms and lightning
Experimental investigations of lightning discharge physics processes
Remote sensing of lightning and related phenomena by ASIM and GLM
Thunderstorms, flash floods, tropical storms and severe weather
Modeling of thunderstorms and lightning
Now-casting and forecasting of thunderstorms using machine learning and AI
Regional and global lightning detection networks
Lightning Safety and its Societal Effects

Co-organized by AS1, co-sponsored by AGU-ASE
Convener: Yoav Yair | Co-conveners: Sonja BehnkeECSECS, Martino Marisaldi, Keri NicollECSECS, Serge Soula
vPICO presentations
| Thu, 29 Apr, 09:00–12:30 (CEST), 13:30–15:00 (CEST)
ERE2.1

Wind and solar power are the predominant new sources of electrical power in recent years. Portugal’s renewable production in March 2018 was 104% of its electricity demand, while Scotland reached 109% in November. By their very nature, wind and solar power, as well as hydro, tidal, wave and other renewable forms of generation are dependent on weather and climate. Modelling and measurement for resource assessment, site selection, long-term and short term variability analysis and forecasting for horizons ranging from minutes to decades are important topics.

The success of wind power means that wind turbines are increasingly put in sites with complex terrain or forests, with towers extending beyond the strict logarithmic profile, and in offshore regions that are difficult to model and measure. Major challenges for solar power are accurate measurements and the short-term prediction of the spatiotemporal evolution of the effects of cloud field and aerosols. Planning and meteorology challenges in Smart Cities are common for both.

For both solar and wind power, the integration of large amounts of renewable energy into the grid is another critical research problem due to the uncertainties in their forecast and to their spatio-temporal variabilities.

We invite contributions on all aspects of weather dependent renewable power generation, e.g.:

• Wind conditions (both resources and loads) on short and long time scales for wind power development, especially in complex environments (e.g. mountains, forests, coastal or urban).
• Long term analysis of inter-annual variability of solar and wind resource
• Typical Meteorological Year and probability of exceedance for wind and solar power development,
• Wind and solar resource and atlases.
• Wake effect models and measurements, especially for large wind farms and offshore.
• Performance and uncertainties of forecasts of renewable power at different time horizons and in different external conditions.
• Forecast of extreme wind events and wind ramps.
• Local, regional and global impacts of renewable energy power plants or of large-scale integration.
• Dedicated wind measurement techniques (SODARS, LIDARS, UAVs etc.).
• Dedicated solar measurement techniques (pyranometric sensors, sun-photometer, ceilometer, fish-eye cameras, etc.) from ground-based and space-borne remote sensing.
• Tools for urban area renewable energy supply strategic planning and control.
Other related topics will be considered by the conveners.

Co-organized by AS1
Convener: Gregor Giebel | Co-conveners: Somnath Baidya Roy, Philippe Blanc, Xiaoli Larsén
vPICO presentations
| Fri, 30 Apr, 09:00–12:30 (CEST)
AS1.26 EDI

The AMANOM session will focus on observations and NWP model applications related to fog, clouds, contrails, precipitation, and short range forecasting of weather conditions associated with aviation operations. Abstracts for all areas of aviation meteorology, including Polar region, high altitude conditions, as well as airport environments, can be submitted to this session. Work on aviation meteorology parameters such as visibility, icing, gusts and turbulence, as well as fog and precipitation, will be considered for this session. Topics related to In-situ observations obtained from aircraft, Uncrewed Aerial Vehicles (UAVs), balloons, and supersites, remote sensing retrievals of meteorological parameters from satellites, radars, lidars, and MicroWave (MW)/InfraRed (IR) Radiometers, as well as other emerging technological platforms, and predictions of meteorological parameters from the numerical weather prediction models will be considered highly related to the goals of this session.

Convener: Ismail Gultepe | Co-conveners: Stan Benjamin, Wayne Feltz, Andrew Heymsfield, Paul Williams
vPICO presentations
| Thu, 29 Apr, 13:30–14:15 (CEST)
AS1.27 EDI

Extreme convective events are increasing in northern and eastern Europe in frequency and intensity accounting for major economic damages related to natural disasters in several countries. Forecasting the land convection locally developed in a short time range is very challenging since the models are not able to resolve them and this is an issue for the air traffic management.

In recent years, attention was paid to the detection and monitoring of volcanic clouds as their impact on the European air traffic control system was unprecedented (e.g. Eyjafjallajökull 2010 eruption). Volcanic clouds are very dangerous for the aviation operations as they can cause damage of the aircraft systems and engines not only close to active volcanoes but also at large distance from the eruption.

The Convective and Volcanic Clouds (CVC) detection and estimation of their physical parameters is a highly multidisciplinary and challenging topic since the same techniques and instruments can be used for meteorology, volcanic monitoring, atmospheric physics and climate purposes. There is an urgent need to develop new techniques and instruments for monitoring, detecting, forecasting and modeling the CVC, to develop early warning systems and to support end-users (such as air traffic managers and pilots) and policy makers. Furthermore, there is a need for improved information exchange regarding the impact of the CVC on daily aviation operations. In this regard, we will draw on the work of the Single European Sky ATM Research (SESAR) Joint Undertaking, with special focus on the latest funded exploratory research projects dealing with these topics.

The objective of the session is to connect different communities in touch with the CVC and to promote discussions between scientists working in remote sensing, modelers, meteorologists, physicists, sensors engineers, engines manufacturers, pilots and aviation managers, allowing the researchers to understand the end-users’ needs and allowing the end-users to understand the research capabilities.

This session solicits the latest studies from the spectrum of:
- detection, monitoring and modeling of CVC with novel techniques and new sensors,
- forecasting and nowcasting extreme weather events,
- study of the CVC structure,
- understanding the impact of the CVC on air traffic management,
- proposal of new products, tools or services focused on the end-users prospective.

Co-organized by NH2
Convener: Riccardo Biondi | Co-conveners: Tatjana Bolic, Stefano Corradini, Nina Iren Kristiansen
vPICO presentations
| Mon, 26 Apr, 15:30–17:00 (CEST)
AS1.28

With the launch of the novel Aeolus Doppler Wind Lidar mission in 2018, a wealth of direct wind and atmospheric backscatter profile observations have become available across the globe in the troposphere and lower stratosphere. This unique data set is revealing new information on atmospheric dynamics, clouds and aerosol optical properties to the benefit of various application areas. This includes Numerical Weather Prediction (NWP), climate modelling, Global Circulation Model dynamics and parameterized processes, e.g., stratosphere-troposphere interaction and atmospheric waves, land and ocean drag, convection, as well as air quality monitoring and air pollution transport. In the second year of the mission an important milestone was reached with the implementation and deployment of a very effective wind bias correction, much improving the wind product quality. This milestone initiated the public release of the Aeolus NRT (Near Real Time) wind products in May 2020, allowing all NWP centers to use Aeolus winds for their daily weather forecasts. It also marked the kick-off of scientific activities addressing the intended application areas and to develop further mission products.

In this session, we aim at discussing results using the Aeolus data for application in meteorology, atmospheric and Earth science process studies, air quality and climate studies, along with data product updates, their validation and reprocessing. Topics can cover Aeolus observation interpretation, atmospheric model diagnostics, model parameterizations, data assimilation experiments and many more. We welcome all presentations on the scientific analysis of Aeolus mission data, including inter-comparisons to independent measurements or atmospheric models, as well as on other data exploitation activities.

Public information:
All about ESA's Earth Explorer Aeolus : https://www.esa.int/Applications/Observing_the_Earth/Aeolus
Scientific manuscripts on Aeolus are being collected: https://amt.copernicus.org/articles/special_issue1131.html
A session on Aeolus and Aeolus follow-on will be held at IGARSS:
https://igarss2021.com/
Convener: Ad Stoffelen | Co-conveners: Anne Grete Straume-Lindner, Jonas von Bismarck
vPICO presentations
| Thu, 29 Apr, 09:00–11:45 (CEST)
HS7.9

Traditionally, hydrologists focus on the partitioning of precipitation water on the surface, into evaporation and runoff, with these fluxes being the input to their hydrologic models. However, more than half of the evaporation globally comes back as precipitation on land, ignoring an important feedback of the water cycle if the previous focus applied. Land-use and water-use changes, as well as climate variability and change alter, not only, the partitioning of water but also the atmospheric input of water as precipitation, related with this feedback, at both remote and local scales.

This session aims to:
i. investigate the remote and local atmospheric feedbacks from human interventions such as greenhouse gasses, irrigation, deforestation, and reservoirs on the water cycle, precipitation and climate, based on observations and coupled modelling approaches,
ii. investigate the use of hydroclimatic frameworks such as the Budyko framework to understand the human and climate effects on both atmospheric water input and partitioning,
iii. explore the implications of atmospheric feedbacks on the hydrologic cycle for land and water management.

Typically, studies in this session are applied studies using fundamental characteristics of the atmospheric branch of the hydrologic cycle on different scales. These fundamentals include, but are not limited to, atmospheric circulation, humidity, hydroclimate frameworks, residence times, recycling ratios, sources and sinks of atmospheric moisture, energy balance and climatic extremes. Studies may also evaluate different sources of data for atmospheric hydrology and implications for inter-comparison and meta-analysis. For example, observations networks, isotopic studies, conceptual models, Budyko-based hydro climatological assessments, back-trajectories, reanalysis and fully coupled earth system model simulations.

Co-organized by AS1
Convener: Ruud van der Ent | Co-conveners: Luis Gimeno, Gonzalo Miguez Macho, Lan Wang-ErlandssonECSECS, Fernando JaramilloECSECS
vPICO presentations
| Wed, 28 Apr, 09:00–10:30 (CEST)
NH1.7

With global climate change affecting the frequency and severity of extreme meteorological and hydrological events, it is particularly necessary to develop models and methodologies for a better understanding and forecasting of present day weather induced hazards. Future changes in the event characteristics as well as changes in vulnerability and exposure are among the further factors for determining risks for infrastructure and society, and for the development of suitable adaptation measures. This session considers extreme events that lead to disastrous hazards induced by severe weather and climate change. These can, e.g., be tropical or extratropical rain- and wind-storms, hail, tornadoes or lightning events, but also floods, long-lasting periods of drought, periods of extremely high or of extremely low temperatures, etc. Papers are sought which contribute to the understanding of their occurrence (conditions and meteorological development), to assessment of their risk and their future changes, to the ability of models to reproduce them and methods to forecast them or produce early warnings, to proactive planning focusing to damage prevention and damage reduction. Papers are also encouraged that look at complex extreme events produced by combinations or sequences of factors that are not extreme by themselves. The session serves as a forum for the interdisciplinary exchange of research approaches and results, involving meteorology, hydrology, hazard management and applications like insurance issues.

Co-organized by AS1/HS2.4
Convener: Athanasios Loukas | Co-conveners: Maria-Carmen Llasat, Uwe Ulbrich
vPICO presentations
| Tue, 27 Apr, 09:00–15:00 (CEST)
AS1.31 EDI

Precipitation, both liquid and solid, is a central element of the global water/energy cycle through its coupling with clouds, water vapor, atmospheric motions, ocean circulation, and land surface processes. Precipitation is also the primary source of freshwater, while it can have tremendous socio-economical impacts associated with extreme weather events such as hurricanes, floods, droughts, and landslides. Accurate and timely knowledge of precipitation characteristics at regional and global scales is essential for understanding how the Earth system operates under changing climatic conditions and for improved societal applications that range from numerical weather prediction to freshwater resource management. This session will host papers on all aspects of precipitation, especially contributions in the following four research areas: Precipitation Measurement: Precipitation measurements (amount, duration, intensity etc) by ground-based in situ sensors (e.g., rain gauges, disdrometers); estimation of accuracy of measurements, comparison of instrumentation. Precipitation Climatology: Regional and global climatology; areal distribution of measured precipitation; classification of precipitation patterns; spatial and temporal characteristics of precipitation; methodologies adopted and their uncertainties; comparative studies. Precipitation Remote Sensing: Remote sensing of precipitation (spaceborne, airborne, ground-based, underwater, or shipborne sensors); methodologies to estimate areal precipitation (interpolation, downscaling, combination of measurements and/or estimates of precipitation); methodologies used for the estimation (e.g., QPE), validation, and assessment of error and uncertainty of precipitation as estimated by remote sensors. A special focus will be on international contributions to the exploitation of the international Global Precipitation Measurement (GPM) mission that provides state-of-the-art precipitation estimates (including solid precipitation) from space with unprecedented accuracy, time-space coverage, and improved information for microphysics.

Co-organized by HS13
Convener: Silas Michaelides | Co-conveners: Gail Skofronick-Jackson, Vincenzo Levizzani, Ehsan SharifiECSECS, Yukari Takayabu
vPICO presentations
| Mon, 26 Apr, 09:00–12:30 (CEST), 13:30–15:00 (CEST)
CR7.1

The polar climate system is strongly affected by interactions between the atmosphere and the cryosphere. Processes that exchange heat, moisture and momentum between land ice, sea ice and the atmosphere, such as katabatic winds, blowing snow, ice melt, polynya formation and sea ice transport, play an important role in local-to-global processes. Atmosphere-ice interactions are also triggered by synoptic weather phenomena such as cold air outbreaks, polar lows, atmospheric rivers, Foehn winds and heatwaves. However, our understanding of these processes is still incomplete.

This session aims at showcasing recent research progress and augmenting existing knowledge in polar meteorology and climate and the atmosphere-land ice-sea ice coupling in both the Northern and Southern Hemispheres. It will provide a setting to foster discussion and help identify gaps, tools, and studies that can be designed to address these open questions. It is also the opportunity to convey newly acquired knowledge to the community.
We invite contributions on all observational and numerical modelling aspects of Arctic and Antarctic meteorology and climatology, that address atmospheric interactions with the cryosphere. This may include but is not limited to studies on past, present and future of:
- Atmospheric processes that influence sea-ice (snow on sea ice, sea ice melt, polynya formation and sea ice production and transport) and associated feedbacks,
- The variability of the polar large-scale atmospheric circulation (such as polar jets, the circumpolar trough and storm tracks) and impact on the cryosphere (sea ice and land ice),
- Atmosphere-ice interactions triggered by synoptic and meso-scale weather phenomena such as cold air outbreaks, katabatic winds, extratropical cyclones, polar cyclones, atmospheric rivers, Foehn winds and heatwaves,
- Role of clouds in polar climate and impact on the land ice and sea ice through interactions with radiation,
- Teleconnections and climate indices and their role in land ice/sea ice variability.
Presentations including new observational (ground and satellite-based) and modelling methodologies specific to polar regions are encouraged. Contributions related to results from recent field campaigns in the Arctic and in the Southern Ocean/Antarctica are also welcomed.

Co-organized by AS1
Convener: Diana Francis | Co-conveners: Amélie Kirchgaessner, Michiel van den Broeke, Till Wagner
vPICO presentations
| Thu, 29 Apr, 13:30–15:00 (CEST)

AS2 – Boundary Layer Processes

Programme group scientific officers: Athanasios Nenes, Annica Ekman

AS2.1 EDI

Driven by atmospheric turbulence, and integrating surface processes to free atmospheric conditions, the Atmospheric Boundary Layer (ABL) plays a key role not only in weather and climate, but also in air quality and wind/solar energy. It is in this context that this session invites theoretical, numerical and observational studies ranging from fundamental aspects of atmospheric turbulence, to parameterizations of the boundary layer, and to renewable energy or air pollution applications. Below we propose a list of the topics included:

- Observational methods in the Atmospheric Boundary Layer
- Simulation and modelling of ABL: from turbulence to boundary layer schemes
- Stable Boundary Layers, gravity waves and intermittency
- Evening and morning transitions of the ABL
- Convective processes in the ABL
- Boundary Layer Clouds and turbulence-fog interactions
- Micro-Mesoscale interactions
- Micrometeorology in complex terrain
- Agricultural and Forest processes in the ABL
- Diffusion and transport of constituents in the ABL
- Turbulence and Air Quality applications
- Turbulence and Wind Energy applications

Solicited contribution:

- "Surface energy balance closure: the role dispersive fluxes induced by submesoscale secondary circulations", by Dr. Matthias Mauder , Karlsruhe Institute of Technology KIT/IMK-IFU, Institute for Meteorology and Climatology - Atmospheric Environmental Research Germany.

Convener: Carlos Yagüe | Co-conveners: Marc Calaf, Maria Antonia Jimenez Cortes
vPICO presentations
| Wed, 28 Apr, 13:30–17:00 (CEST)
NP6.4 EDI

The multitude of processes of various scales occurring simultaneously under strong winds in the air and sea boundary layers presents a true challenge for nonlinear science. We want to understand the physics of these processes, their specific role, their interactions and how they can be probed remotely, how these processes differ from their counterparts under moderate/weak winds. We welcome theoretical, experimental and numerical works on all aspects of processes in turbulent boundary layers above and below the ocean surface. Although we are particularly interested in the processes and phenomena occurring under strong wind conditions, the works concerned with similar processes under weaker winds which might provide an insight for rough seas are also welcomed. We are also very interested in works on remote sensing of these processes.
The areas of interest include the processes at and in the vicinity of the interface (nonlinear dynamics of surface water, wave-turbulence interactions, wave breaking, generation and dynamics of spray and air bubbles, thermodynamics of the processes in the boundary layers, heat and gas exchange), all the processes above and below the aIr/water interface, as long as they are relevant for strong wind conditions (such as, e.g. inertial waves generated by changing winds). Relevant nonlinear biological phenomena are also welcomed.
The main aims of the session is to initiate discussion of the multitude of processes active under strong winds across the narrow specializations as a step towards creating an integrated picture. Theoretical, numerical, experimental and observational works are welcomed.

Geophysical Fluid Dynamics (GFD) is a truly interdisciplinary field, including different topics dealing with rotating stratified fluids. It emerges in the late 50s, when scientists from meteorology, oceanography, astrophysics, geological fluid dynamics, and applied mathematics began to mathematically model complex flows and thereby unify these fields. Since then many new aspects were added and deeper insight into many problems has been achieved. New mathematical and statistical tools were developed, standard techniques were refined, classical problems were varied. In this session we primarily focus on contributions from dynamic meteorology and physical oceanography that model flows by mathematical analysis. However, it is also a forum for experimental GFD and for astrophysical and geological aspects of GFD as well.

Co-organized by AS2/NH5/OS4
Convener: Yuliya Troitskaya | Co-conveners: Uwe Harlander, Victor Shrira, Michael Kurgansky, Wu-ting Tsai, Claudia Cherubini, Daria GladskikhECSECS, Costanza Rodda
vPICO presentations
| Mon, 26 Apr, 09:00–12:30 (CEST), 13:30–15:00 (CEST)
AS2.3

The session is addressed to experimentalists and modellers working on land surface interactions from local to regional scales. The programme is open to a wide range of new studies in micrometeorology and related atmospheric and remote sensing disciplines. The topics include the development of new devices, measurement techniques, experimental design, data analysis methods, as well as novel findings on surface layer theory and parametrization, including local and non-local processes. The theoretical parts encompass soil-vegetation-atmosphere transport, internal boundary-layer theories and flux footprint analyses. Of special interest are synergistic studies employing experimental data, parametrizations and models. This includes energy and trace gas fluxes (inert and reactive) as well as water, carbon dioxide and other GHG fluxes. Specific focus is given to outstanding problems in land surface boundary layer descriptions such as complex terrain, effects of horizontal heterogeneity on sub-meso-scale transport processes, energy balance closure, stable stratification and night time fluxes, dynamic interactions with atmosphere, plants (in canopy and above canopy) and soils.

Co-organized by SSS11, co-sponsored by iLEAPS and ICOS
Convener: Christoph Thomas | Co-conveners: Natascha Kljun, Matthias Mauder, Andreas Ibrom
vPICO presentations
| Thu, 29 Apr, 09:00–11:45 (CEST)
BG2 EDI

Tropical ecosystems are biomes of global significance due to their large biodiversity, carbon storage capacity, and their role in the hydrological cycle. Historic and recent human activities have, however, resulted in intensive transformation of the tropical ecosystems in the Amazon, Central America, Central Africa and in South East Asia impacting the cycling of nutrient, carbon, water, and energy. Understanding their current functioning at process up to biome level in its pristine and transformed state is elemental for predicting their response upon changing climate and land use, and the impact this will have on local up to global scale.
This session aims at bringing together scientists who investigate the functioning of the tropical ecosystems across spatial and temporal scales by means of remote and in-situ observational, modelling, and theoretical studies. Particularly welcome are presentations of novel, interdisciplinary approaches and techniques.

Co-organized by AS2/HS10/SSS8
Convener: Jošt Valentin Lavrič | Co-conveners: Alexander Knohl, Julia Drewer, Laynara F. LugliECSECS, Carlos Alberto Quesada, Matthias Sörgel, Hans Verbeeck
vPICO presentations
| Mon, 26 Apr, 13:30–15:00 (CEST)
HS10.4

Evapotranspiration (ET) is the key water flux at the interface of soil, vegetation and atmosphere. In-situ measurements to estimate ET (and its individual components evaporation and transpiration) have been developed in different research disciplines and cover a range of scales, from the point scale of individual sap flow sensors in trees over pedon-scale lysimeters to eddy covariance footprints. Each estimate and each scaling step includes a method-specific set of uncertainties which are rarely communicated. This is problematic for connecting different methods and the effort to scale up to remote sensing products from satellites or to model resolutions.

This session will mainly focus on the variety of ET estimates from different in-situ devices such as lysimeters, sap flow sensors, eddy covariance stations, scintillometers, approaches like the Bowen ratio method and others, including reporting and comparing the respective uncertainties of the methods. Additionally, we want to address the scale dependency of the various approaches and the scale gap between in-situ ET data, remote sensing products and catchment- or landscape-scale modelled ET. We welcome contributions that (1) assess and compare established and new in-situ ET measurements, (2) address uncertainty in the respective methods, (3) analyse trends as well as spatial and temporal patterns in in-situ measured ET data, (4) include cross-scale comparisons and scaling approaches and (5) incorporate in-situ measurements into modeling approaches.

Co-organized by AS2/BG3
Convener: Sibylle K. Hassler | Co-conveners: Harrie-Jan Hendricks Franssen, Corinna Rebmann
vPICO presentations
| Thu, 29 Apr, 11:45–12:30 (CEST)
CL4.17 EDI

Land–atmosphere interactions often play a decisive role in shaping climate extremes. As climate change continues to exacerbate the occurrence of extreme events, a key challenge is to unravel how land states regulate the occurrence of droughts, heatwaves, intense precipitation and other extreme events. This session focuses on how natural and managed land surface conditions (e.g., soil moisture, soil temperature, vegetation state, surface albedo, snow or frozen soil) interact with other components of the climate system – via water, heat and carbon exchanges – and how these interactions affect the state and evolution of the atmospheric boundary layer. Moreover, emphasis is placed on the role of these interactions in alleviating or aggravating the occurrence and impacts of extreme events. We welcome studies using field measurements, remote sensing observations, theory and modelling to analyse this interplay under past, present and/or future climates and at scales ranging from local to global but with emphasis on larger scales.

Co-organized by AS2/BG3/HS13
Convener: Adriaan J. (Ryan) Teuling | Co-conveners: Gianpaolo Balsamo, Diego G. Miralles, Sonia Seneviratne, Wim ThieryECSECS
vPICO presentations
| Tue, 27 Apr, 09:00–12:30 (CEST)
CL2.2 EDI

As the most evident example of land use and land cover change, urban areas play a fundamental role in local to large-scale planetary processes, via modification of heat, moisture, and chemical budgets. With rapid urbanization ramping up globally it is essential to recognize the consequences of landscape conversion to the built environment. Given the capability of cities to serve as first responders to global change, considerable efforts are currently being dedicated across many cities to monitor and understand urban atmospheric dynamics and examine various adaptation and mitigation strategies aimed to offset impacts of rapidly expanding urban environments and influences of large-scale greenhouse gas emissions.

This session solicits submissions from both the observational and modelling communities examining urban atmospheric and landscape dynamics, processes and impacts owing to urban induced climate change, the efficacy of various strategies to reduce such impacts, and techniques highlighting how cities are already using novel science data and products that facilitate planning and policies on urban adaptation to and mitigation of the effects of climate change. Emerging topics including, but not limited to, compounding impacts with urban COVID-19 outbreaks or urban climate informatics, are highly encouraged.

Co-organized by AS2
Convener: Natalie TheeuwesECSECS | Co-conveners: Sorin Cheval, M Georgescu, Hendrik WoutersECSECS
vPICO presentations
| Tue, 27 Apr, 09:00–15:00 (CEST)
AS2.8 EDI

This session aims at fostering discussions on the physical processes at work at the air-sea interface, including their observation and representation in coupled numerical models, as well as their impact of air-sea fluxes. Examples of such processes are solar radiation-induced diurnal warming, rain-induced cool and fresh lenses, and processes controlling the formation and properties of the surface microlayer. Additional focus is on gustiness associated with convection in the atmospheric boundary layer and evaporative cold pools. Further focus is on air-sea interactions in polar regions, in particular related to cold air outbreaks, including the role of sea ice and the effect of leads. Air-sea interaction related to surface temperature and salinity fronts, as well as oceanic meso- and sub-mesoscale dynamics, are also of great interest. Studies considering the variability of biogeochemical properties related to air-sea processes will also be considered.

This session is thus intended for (i) contributions presenting observational or theoretical aspects of the processes described above and their impact on energy, water, momentum, gas and aerosols exchanges at the interface; and (ii) contributions focusing on the mathematical and algorithmic methods used to represent these processes in coupled ocean-atmosphere models.

This session seeks observational studies based on recent field campaigns or satellite remote sensing. This session also aims to gather studies using numerical models of any level of complexity (from highly idealized to realistic) and any resolution from Large Eddy Simulation (LES) to global circulation models. Studies describing the impact of the air-sea interaction physical processes on the mean global or regional climates and variability representation are also welcome.

Co-organized by OS4
Convener: Hugo Bellenger | Co-conveners: Kyla Drushka, Ilan Koren, Thomas Spengler, Brian Ward
vPICO presentations
| Tue, 27 Apr, 15:30–17:00 (CEST)
OS1.4 EDI

Observations and model simulations illustrate significant ocean variability and associated air-sea interactions in the tropical Atlantic basin from daily-to-decadal time scales. This session is devoted to the understanding of ocean dynamics in the tropical and subtropical Atlantic Ocean, its interaction with the overlying atmosphere from the equator to the mid-latitudes and its climate impacts on adjacent to remote areas.
Relevant processes in the ocean include upper and deep ocean circulation, eddies, tropical instability waves, warm pools, cold tongues and eastern boundary upwellings. We are interested in air-sea interactions related to both the seasonal cycle and the development of modes of variability from local to basin scale (e.g. the Meridional Mode, the Atlantic Niño, and the Benguela Niño). We welcome studies on wind variations related to the development of these modes, as well as studies on high-frequency events, such as marine heat waves, the Madden-Julian Oscillation, tropical cyclones and convective systems. Furthermore, we seek studies on climate change in the region, and also of the climatic impacts of change and variability on marine ecosystems. Finally, we are also interested in contributions examining the causes and impacts of systematic model errors in simulating the local to regional Atlantic climate.
Studies based on direct observations, reanalysis, reconstructions as well as model simulations are welcome.

Co-organized by AS2/CL4
Convener: Marta Martín-ReyECSECS | Co-conveners: Marie-Lou BacheleryECSECS, Peter Brandt, Noel Keenlyside, Alban Lazar
vPICO presentations
| Tue, 27 Apr, 09:00–12:30 (CEST)
ITS3.12/AS2.10 EDI

Atmosphere and Cryosphere are closely linked and need to be investigated as an interdisciplinary subject. Most of the cryospheric areas have undergone severe changes in last decades while such areas have been more fragile and less adaptable to global climate changes. This AS-CR session invites model- and observational-based investigations on any aspects of linkages between atmospheric processes and snow and ice on local, regional and global scales. Emphasis is given on the Arctic, high latitudes and altitudes, mountains, sea ice, Antarctic regions. In particular, we encourage studies that address aerosols (such as Black Carbon, Organic Carbon, dust, volcanic ash, diatoms, bioaerosols, bacteria, etc.) and changes in the cryosphere, e.g., effects on snow/ice melt and albedo. The session also focuses on dust transport, aeolian deposition, and volcanic dust, including health, environmental or climate impacts at high latitudes, high altitudes and cold Polar Regions. We include contributions on biological and ecological sciences including dust-organisms interactions, cryoconites, bio-albedo, eco-physiological, biogeochemical and genomic studies. Related topics are light absorbing impurities, cold deserts, dust storms, long-range transport, glaciers darkening, polar ecology, and more. The scientific understanding of the AS-CR interaction needs to be addressed better and linked to the global climate predictions scenarios.

Co-organized by BG3/CL4/CR7/NH1
Convener: Pavla Dagsson Waldhauserova | Co-conveners: Biagio Di Mauro, Marie Dumont, Outi Meinander
vPICO presentations
| Mon, 26 Apr, 15:30–17:00 (CEST)
OS1.3 EDI

The rapid decline of the Arctic sea ice in the last decade is a dramatic indicator of climate change. The Arctic sea ice cover is now thinner, weaker and drifts faster. Freak heatwaves are common. On land, the permafrost is dramatically thawing, glaciers are disappearing, and forest fires are raging. The ocean is also changing: the volume of freshwater stored in the Arctic has increased as have the inputs of coastal runoff from Siberia and Greenland and the exchanges with the Atlantic and Pacific Oceans. As the global surface temperature rises, the Arctic Ocean is speculated to become seasonally ice-free by the mid 21st century, which prompts us to revisit our perceptions of the Arctic system as a whole. What could the Arctic Ocean look like in the future? How are the present changes in the Arctic going to affect and be affected by the lower latitudes? What aspects of the changing Arctic should observational, remote sensing and modelling programmes address in priority?
In this session, we invite contributions from a variety of studies on the recent past, present and future Arctic. We encourage submissions examining interactions between the ocean, atmosphere and sea ice, on emerging mechanisms and feedbacks in the Arctic and on how the Arctic influences the global ocean. Submissions with a focus on emerging cryospheric, oceanic and biogeochemical processes and their implications are particularly welcome.
The session promotes results from current Arctic programmes and discussions on future plans for Arctic Ocean modelling and measurement strategies, and encourages submissions on the first results from CMIP6 and the recently completed Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC). This session is cosponsored by the CLIVAR /CliC Northern Ocean Regional Panel (NORP) that aims to facilitate progress and identify scientific opportunities in (sub)Arctic ocean-sea-ice-atmosphere research.

Co-organized by AS2/BG4/CL4/CR4, co-sponsored by NORP
Convener: Yevgeny Aksenov | Co-conveners: Paul A. Dodd, Céline Heuzé, Krissy Reeve, Yufang Ye
vPICO presentations
| Thu, 29 Apr, 11:00–12:30 (CEST), 13:30–17:00 (CEST)
AS2.12 EDI

This session is intended to provide an interdisciplinary forum to bring together researchers working in the areas of high-latitude meteorology, atmospheric chemistry, stable isotope research, oceanography, and climate. The emphasis is on the role of boundary layer processes that mediate exchange of heat, momentum and mass between the Earth's surface (snow, sea-ice, ocean and land) and the atmosphere as well as the local to large-scale influences on these exchanges. An adequate understanding and quantification of these processes is necessary to improve modeling and prediction of future changes in the polar regions and their teleconnections with mid-latitude weather and climate, including meridional transport of heat, moisture, chemical trace species, aerosols and isotopic tracers (indicating airmass origins and atmospheric processes); and regional emission and vertical mixing of climate active trace gases and aerosol, such as cloud-forming particles (CCN/INP) and their precursors. It is expected that the recent implementation of new measurements such as those from pan-Arctic water vapor isotope networks, observations such as those obtained during the MOSAiC field program, and data from existing networks will help diagnose long-range moisture and aerosol sources and the coupling between local and large-scale dynamics. We encourage submissions such as (but not limited to):
(1) External controls on the boundary layer such as clouds, radiation and long-range transport processes
(2) Results from field programs, such as MOSAiC, and routine observatories, insights from laboratory studies, and advances in modeling and reanalysis,
(3) Use of data from pan-Arctic and Antarctic observing networks,
(4) Surface processes involving snow, sea-ice, ocean, land/atmosphere chemical and isotope exchanges, and natural aerosol sources
(5) The role of boundary layers in polar climate change and implications of climate change for surface exchange processes, especially in the context of reduced sea ice, wetter snowpacks, increased glacial discharge and physical and chemical changes associated with an increasing fraction of first year ice and increasing open water.

Co-organized by CR7
Convener: William Neff | Co-conveners: Markus Frey, Michael Tjernström, Sonja WahlECSECS, Gillian McCuskerECSECS
vPICO presentations
| Fri, 30 Apr, 09:00–10:30 (CEST)

AS3 – Atmospheric Chemistry and Aerosols

Programme group scientific officers: Athanasios Nenes, Annica Ekman

AS3.1 EDI

Aerosol particles are key components of the earth system important in radiative balance, human health, and other areas of key societal concern. Understanding their formation, evolution and impacts relies on developments from multiple disciplines covering both experimental laboratory work, field studies and numerical modelling. In this general session all topics of Aerosol Chemistry and Physics are covered. Contributions from aerosol laboratory, field, remote sensing and model studies are all highly encouraged.

As in previous years, this year the session will dedicate some of its time to focus on a hot topic which this year is on the use of statistical methods and machine learning across a range of scales in aerosol research: from studies designed to decipher source and/or process contributions to measured aerosol signatures through to the role of aerosols in climate projections. Regarding the latter, we will be presenting contributions related to the H2020 project FORCeS which aims at reducing the uncertainty related to aerosols in climate projections.

Why focus on such a broad scale of activities? The aerosol community has spent significant effort developing and deploying a range of instruments to capture the evolving chemical and physical properties of laboratory and ambient systems. This information in turn should be used to better constrain source and process contributions in mechanistic and/or impact driven models. As the resolving power of such instruments to provide us with a 'snapshot' of a chemical signature increases, through a given form of instrument response, so to must we evaluate the usefulness of a range of analytical methods to convert those signatures into information about source and process contributions. Likewise, as the complexity of information on aerosol evolution increases, we must consider alternative ways for improving such descriptions in large-scale impact driven models. As the availability of various machine learning and statistical packages increases, we are now able to start conducting such research. With this in mind, aside from general submissions on aerosol research, we encourage contributions from this emerging area of research.

Convener: Ilona Riipinen | Co-conveners: David Topping, Annele Virtanen
vPICO presentations
| Mon, 26 Apr, 09:00–12:30 (CEST), 13:30–15:00 (CEST)
AS3.2 EDI

A better understanding of the role of natural aerosols in the atmosphere is essential for assessing anthropogenic radiative forcing and the climate response. Our session explores primary aerosols and those formed from precursor gases emitted by natural sources, e.g. from wildfires, deserts, volcanoes, oceans, and vegetation. The session intends to bring together experts from different fields to assess the state-of-the-science knowledge on natural aerosols and to identify future directions to reduce uncertainty in their emissions and impacts. We encourage submissions that use models across different spatial scales and consider past, present or future perspectives, as well as measurements from remote sensing, field campaigns and laboratory experiments. Questions of particular interest are, but not limited to:

- How can we distinguish between truly natural aerosols and those whose emissions or formation are influenced by anthropogenic activities?
- Where are the missing links in our understanding of the lifecycle of natural aerosols?
- How does the contributions of natural aerosols to atmospheric composition and deposition change over time?
- What are the consequences of changes in natural aerosols, e.g., for photovoltaic power production?

Convener: Stephanie Fiedler | Co-conveners: Douglas Hamilton, Kerstin Schepanski, Catherine Scott
vPICO presentations
| Thu, 29 Apr, 13:30–14:15 (CEST)
AS3.3

The Aerosol Chemistry Model Intercomparison Project (AerChemMIP), part of the Coupled-Model Intercomparison Project 6 (CMIP6), builds on earlier Chemistry-Climate Model Intercomparison(CCMI), and Hemispheric Transport of Air Pollution (HTAP) experiments to quantify the climate and air quality impacts of aerosols and chemically reactive gases from the pre-industrial to present day, and projected into the future. Linked projects, the Radiative Forcing Model Intercomparison Project (RFMIP) and the Precipitation Driver Response Model Intercomparison Project (PDRMIP), examine radiative forcing estimates across the CMIP6 models. This session, with a focus on global scale atmospheric chemistry and aerosol modelling and radiative forcing in AerChemMIP, RFMIP and other CMIP6-era simulations, aims to bring together scientists with an interest in:

- quantifying the impact of emissions changes on atmospheric composition and radiative forcing over the period 1850-2100.

- evaluating reactive gases and aerosols in CMIP6 models against observations.

- exploring chemistry-climate interactions in CMIP6 models, with a focus on climate response to changes in trace gas and aerosol concentrations.

- understanding components of radiative forcing.

We invite submission of abstracts in the following areas:

- Global and regional evaluation of CMIP, CCMI and HTAP models and variability across different spatial and temporal scales.

- Modelling studies to understand the cause and impact of changes in atmospheric composition in CMIP6 experiments.

- Quantification of radiative forcing in CMIP6 models, including the roles of chemistry and aerosols.

We particularly welcome contributions from the AerChemMIP, RFMIP and PDRMIP modelling communities to these discussions.

Public information:
At 1542 CEST our highlight abstracts will be presented. These include Robert Allen on the efficacy of control of methane to mitigate climate change, Gill Thornhill on a keystone analysis of the radiative forcing of aerosols and gases, and Steven Turnock speaking about the impact of emissions control on air quality.
Convener: William Collins | Co-conveners: Piers M. Forster, Paul Griffiths, James Keeble, Fiona O'Connor
vPICO presentations
| Fri, 30 Apr, 15:30–17:00 (CEST)
CL3.1.2 EDI

Anthropogenic aerosol plays a key role in driving climate anomalies over a range of spatial and temporal scales, both near the emission location and remotely through teleconnections. Aerosols can interact with radiation and clouds, directly and through absorption, microphysics and circulation, and thereby modify the surface and atmospheric energy balance, cloud dynamics and precipitation patterns, and the atmospheric and oceanic circulation. This session addresses progress in understanding the mechanisms and pathways by which aerosols affect regional climate features, overall, over the historical era, and in the near future. We encourage contributions on new model and observation-based approaches to investigate the effects of aerosols on regional decadal climate variability and extremes, tropical-extratropical interactions and teleconnections, and the interplay with modes of variability such as the NAO, AMO, and PDO. Focus studies on monsoon, midlatitude, and Arctic responses, extreme precipitation, circulation changes, daily variability, CMIP6 projections of high and low aerosol futures, and investigations using large ensemble simulations are welcome.

Co-organized by AS3
Convener: Laura Wilcox | Co-conveners: Massimo Bollasina, Bjorn H. Samset, Sabine Undorf
vPICO presentations
| Thu, 29 Apr, 13:30–14:15 (CEST)
AS3.5

The session focuses on the variability of the tropospheric and stratospheric chemical composition on the timescales from diurnal to decadal. It discusses the processes driving this variability and attribution of changes. Special emphasis is put on the scientific value of high-quality long-term measurement data sets and supporting model simulations. Both approaches contribute to improved understanding of the mechanisms that control the variability of atmospheric chemical composition (including multiple gaseous species). Presentations related to the projections of the atmospheric composition are welcome in this session as well.
Researchers are invited to present novel scientific results from mid- and long-term observational time series from various programmes and networks such as the Global Atmosphere Watch (GAW) Programme, European Monitoring, and Evaluation Programme (EMEP), Network for the Detection of Atmospheric Composition Change (NDACC), Southern Hemisphere Additional Ozonesondes (SHADOZ), Advanced Global Atmospheric Gases Experiment (AGAGE), National Oceanic and Atmospheric Administration (NOAA), regular airborne (e.g. CARIBIC, IAGOS, CONTRAIL) and other campaigns as well as satellite data and model simulations. Data relevant to tropospheric and stratospheric composition, in particular, related to ozone depletion, climate change, and air quality as well as firn data on past atmospheric composition are welcome. We welcome contributions from multi-year modeling studies and inter-comparison exercises that address past and future tropospheric or stratospheric composition changes, carried out in the framework of international projects and initiatives.

Convener: Oksana Tarasova | Co-conveners: Pedro Jimenez-Guerrero, Euan Nisbet, Andrea Pozzer
vPICO presentations
| Tue, 27 Apr, 09:00–15:00 (CEST)
AS3.6 EDI

Anthropogenic emissions of greenhouse gases and ozone depleting substances have caused substantial changes in the chemical composition of the middle atmosphere that, in turn, can influence tropospheric processes. For example, increasing greenhouse gases are expected to modify the large-scale circulation of the stratosphere, the Brewer-Dobson circulation (BDC), and the stratospheric abundance of radiatively active gases, notably ozone and water vapour. Such changes in the BDC and composition affect the exposure of the biosphere to harmful UV radiation and can feed back on surface climate through their influence on radiative forcing and tropospheric dynamics. In addition, long-term changes in the ozone layer (e.g. ozone hole and recovery) strongly influence the tropospheric circulation in the Southern Hemisphere. These changes are further coupled to a variety of Earth system feedbacks. We welcome abstracts which explore middle-atmosphere composition changes, their impacts on tropospheric climate and composition, and resulting feedbacks. Abstracts may address these issues on time-scales encompassing inter-annual to centennial timescales, as well as impacts ranging from the tropics to poles and globally. Research might also concern long-term ozone trends (depletion and recovery), as well as changes in the upper troposphere and lower stratosphere (UTLS) region. We welcome contributions exploring these topics using chemistry-climate and Earth system models, Earth observations, as well as contributions on novel methodological approaches (as e.g. machine learning) to gain insights into composition changes, related feedbacks and theoretical studies.

Convener: Gabriel ChiodoECSECS | Co-conveners: William Ball, Mohamadou Diallo, Birgit Hassler, James Keeble, Peer Nowack
vPICO presentations
| Thu, 29 Apr, 11:45–12:30 (CEST)
AS3.7 EDI

A correct characterization of atmospheric transport is crucial for the understanding of environmental challenges such as acid rain, ozone depletion, and climate change. However, there are still significant gaps in our knowledge. The impacts of the recent large wildfires, the role of the atmosphere for the spread of microplastic particles, the transport of biological material such as bacteria, viruses, pollen, and fungal spores are topics of increasing concern. In additions, transport of dust, greenhouse gases, classical pollutants, and ozone-depleting substances continues to be an active research area.

For a realistic characterization of the atmospheric composition, the connection between local and global scales often plays an important role and present challenges for models, as well as the correct reconstruction of anthropogenic and natural emission. In this context, Lagrangian models, more robust with respect to scales, represent an important tool and find applications for many practical purposes including volcanic eruptions, nuclear accidents and extreme pollution events. In addition, in combination with observations, inverse modelling techniques can be used to assess emission sources, which are generally poorly constrained.

Similarly, the development of models with respect to numerical issues and parameterization of processes, such as dry and wet deposition for various kinds of trace substances, is ongoing. Case studies can help to estimate how good models perform and enable tuning of those parametrizations.

Contributions are therefore invited for the following topics:
• Applications of Lagrangian atmospheric transport models.
• Interpretation of measurements of atmospheric trace substances using atmospheric transport modelling, including novel applications such as biological or microplastic materials.
• Studies combining observations and models to infer information about emissions or transport characteristics.
• New developments and improvements in atmospheric transport modelling, including the improvement of parameterization of atmospheric processes, the quantitative assessment of uncertainties, improving model performance, and the proper coupling of Lagrangian models to Eulerian Numerical Weather Prediction and General Circulation models.

Convener: Silvia BucciECSECS | Co-conveners: Sabine Eckhardt, Ignacio Pisso, Petra Seibert
vPICO presentations
| Fri, 30 Apr, 13:30–15:00 (CEST)
AS3.8 EDI

Accurate and precise atmospheric measurements of greenhouse gas (GHG) concentrations reveal the rapid and unceasing rise of global GHG concentrations due to human activity. The resulting increases in global temperatures, sea-level, glacial retreat, and other negative impacts are clear. In response to this evidence, nations, states, and cities, private enterprises and individuals have been accelerating GHG reduction efforts while meeting the needs of global development. The urgency, complexity and economic implications of GHG reductions demand strategic investment in science-based information for planning and tracking emission reduction policies and actions. In response, the World Meteorological Organization (WMO) Global Atmosphere Watch Program (GAW) and its partners have initiated the development of an Integrated Global Greenhouse Gas Information System (IG3IS). IG3IS combines atmospheric GHG concentration measurements and human-activity data in an inverse modeling framework to help decision-makers take better-informed action to reduce emissions of greenhouse gases and pollutants that reduce air quality. This service is based on existing and successful measurement and analysis methods and use-cases for which the scientific and technical skill is proven or emerging.

This session intends to gather presentations from researchers and decision-makers (user-community) on the development, implementation and use of atmospheric measurement-based “top-down” and data-driven “bottom-up” GHG emission inventory estimates, and the combination of both approaches, explicit in space and time, to deliver actionable emissions information at scales where human activity occurs and emission reduction is most effective. This session will also showcase the new projects and “good-practice” standards of the World Meteorological Organization (WMO) Integrated Global Greenhouse Gas Information System (IG3IS), which is part of WMO’s commitment to science-based services.

Convener: Phil DeCola | Co-conveners: Philippe Ciais, Tomohiro Oda, Oksana Tarasova, Jocelyn Turnbull
vPICO presentations
| Fri, 30 Apr, 11:00–15:00 (CEST)
AS3.9

Significant uncertainties exist in our understanding of the CO2 and CH4 fluxes between land or ocean and atmosphere on regional and global scales. Remotely-sensed CO2 and CH4 observations provide a significant potential for improving our understanding of the natural carbon cycle and for the monitoring of anthropogenic emissions. Over the last few years, remote sensing technologies for measuring CO2 and CH4 from space, aircraft, and from the ground made great advances. New passive and active instruments from different platforms became available offering unprecedented accuracy and coverage.

This session is open to contributions related to all aspects of remote sensing of the greenhouse gases CO2 and CH4 from current, upcoming and planned satellite missions (e.g., OCO-2/3, GOSAT-2, Tansat, S5P, MERLIN, Microcarb, CO2M), as well as ground-based (e.g., TCCON, COCCON), aircraft, and other remote sensing instruments. This includes advances in retrieval techniques, instrumental concepts, and validation activities. We specifically encourage contributions that focus on the interpretation of observations with respect to natural fluxes or anthropogenic emissions.

Convener: Dietrich G. Feist | Co-conveners: Sander Houweling, Neil Humpage, Maximilian Reuter
vPICO presentations
| Fri, 30 Apr, 09:00–10:30 (CEST)
AS3.12 EDI

Methane is an important greenhouse gas that has contributed ∼25% of the radiative forcing experienced to date. Despite methane’s short atmospheric lifetime (~10 years), the global methane mole fraction has increased three times faster than carbon dioxide since 1750. Methane emission mitigation is an effective way to reduce the short-term rate of warming, and is essential to IPCC pathways that limit warming below 2 C. In contrast to carbon dioxide, anthropogenic methane emissions originate from a large variety and number of diffuse point sources that are mostly independent of combustion processes. As a result, systematic, international atmospheric measurements are needed to inform emission inventories and mitigation strategies.

This session will highlight field research and satellite studies that focus on methane emissions from human activities (e.g., oil and gas production, coal mining, fire, rice production, ruminants, landfills and waste). Particular emphasis is on atmospheric observations at different spatio-temporal scales with the aim to (1) reduce the uncertainty in the measured magnitude of emissions, (2) identify source-specific emission patterns and mitigation opportunities, and (3) inform government, industry, and other stakeholders on mitigation pathways.

Convener: Stefan Schwietzke | Co-conveners: Andreea Calcan, Bryce F.J. Kelly, Christopher Konek
vPICO presentations
| Fri, 30 Apr, 15:30–17:00 (CEST)
AS3.13 EDI

Atmospheric aerosol-cloud-climate interactions (e.g. heterogeneous nucleation, particle oxidation and photosensitization, molecular composition-, phase-, acidity- and structure- changes, ...) are fundamental processes in the atmosphere. Despite the importance of these processes in energy transfer, cloud dynamics, precipitation formation, and hence in climate change, little is known about the molecular mechanism and the respective contribution of different structural and chemical surface properties of the atmospheric aerosols controlling these processes in the atmosphere. For Example, ice particles in the atmosphere, both in cirrus and mixed-phase clouds, contribute to the largest uncertainty in interpretations of the Earth’s changing energy budget. Their large variability in number, size, shape, and surface properties makes it difficult to understand and parameterize their microphysical and hence radiative properties.

Fundamental understanding of the cloud dynamics and aerosol properties, which play the major role in the climate system, will require the understanding of gas-, water-, and ice-aerosol surface interactions. To advance our knowledge about atmospheric processes, this session aims to bring together two research areas, namely (1) Atmospheric Surface Science (ASS) and (2) Ice Nucleating Particles (INP):
(1) ASS is concerned with the experimental and theoretical approaches investigating atmospheric interactions as well as ice nucleation processes “on the molecular level”. The goal is to fill the gap between the large-scale atmospheric processes and gas-, water-, and ice- interactions with atmospherically relevant mineral and biological surfaces.
(2) INP are concerned with the laboratory examination, on a fundamental level, trying to understand the nucleation processes and characterizing INP in the atmosphere.

Convener: Hinrich Grothe | Co-conveners: Ahmed Abdelmonem, Mária Lbadaoui-Darvas, Josip Lovrić, Christian RolfECSECS, Odran SourdevalECSECS, Sylvia SullivanECSECS, Satoshi Takahama
vPICO presentations
| Tue, 27 Apr, 15:30–17:00 (CEST)
AS3.14

Remote sensing of clouds and aerosols is of central importance for studying climate system processes and changes. Reliable information is required on climate-relevant parameters such as aerosol and cloud optical thickness, layer height, particle size, liquid or ice water path and vertical particulate matter columns. A number of challenges and unsolved problems remain in algorithms and their application. This includes remote sensing of clouds and aerosols with respect to 3D effects, remote sensing of polluted and mixed clouds, combination of ground-based and satellite-based systems, and the creation of long-term uniform global records. This session is aimed at the discussion of current developments, challenges and opportunities in aerosol and cloud remote sensing using active and passive remote sensing systems.

Convener: Jan Cermak | Co-conveners: Virginie Capelle, Gerrit de Leeuw, Alexander Kokhanovsky
vPICO presentations
| Thu, 29 Apr, 14:15–17:00 (CEST)
AS3.15 EDI

Over the last years, more and more satellite data on tropospheric composition have become available and are now being used in numerous applications. In this session, we aim at bringing together reports on new or improved data products and their validation as well as studies using satellite data for applications in tropospheric chemistry, emission inversions and air quality. This includes both studies on trace gases and on aerosols.

We welcome presentations based on studies analysing current and future satellite missions, in particular Sentinel 5P, inter-comparisons of different remote sensing measurements dedicated to tropospheric chemistry sounding and/or analyses with ground-based measurements and chemical transport models.

Public information:
The session comprises 33 presentations devided into two time blocks. The
first block of 17 presentations (one 5-min solicited presentation + 16
vPICO presentations) is followed by a chat discussion phase on these
presentations. In the second block, we will have 16 presentations (one
5-min solicited presentation + 15 vPICO presentations) with a subsequent
second discussion phase on the contributions from the second block.
Convener: Andreas Richter | Co-conveners: Cathy Clerbaux, Pieternel Levelt, Anja Schoenhardt
vPICO presentations
| Wed, 28 Apr, 13:30–17:00 (CEST)
AS3.16 EDI

Over the last decades, Earth’s atmospheric composition has been extensively monitored from space using different techniques and spectral ranges. The GOME (Global Ozone Monitoring Experiment) instrument launched in 1995 by ESA showed that atmospheric space missions can not only be used for ozone monitoring but also to measure a number of trace gases for air quality and climate monitoring. Several decades after these pioneering efforts, continuous progress in instrument design, and retrieval techniques allows now operational monitoring of stratospheric and tropospheric concentrations of a wide range of trace gases and aerosol information with implications for air quality and climate. This has been well demonstrated with the successful operations of the Sentinel-5 Precursor (S-5P) satellite since 2018.
S-5P is the first of a series of atmospheric missions within the European Commission’s Copernicus Programme and will be extended with the future Sentinel-4 and -5 satellite series. The current/future European (Copernicus) atmospheric measurement capabilities are/will be complimented by other space missions like EOS-Aura, MetOp, MetOp-SG, SUOMI-NPP, GOSAT/2, TanSat, GaoFen 5, OCO2/3, TEMPO, GEMS and others.
This session addresses latest results on S-5P operational products usage (e.g. COVID-19 impact monitoring, detection of emission hot spots, atypical ozone hole in Antarctic and Artic), results of algorithm studies to develop additional S5-P products (e.g. bromine monoxide, water vapour, glyoxal, AOD, SIF, chlorophyll, and chlorine dioxide) and their geophysical validation. Synergistic data usage or intercomparison results of S-5P measurements with con-current flying missions (e.g. SUOMI-NPP, MetOp, GOSAT) and algorithm studies for future mission retrieval algorithms (e.g. Sentinel-4/5) will be addressed. Opportunities that new instrument concepts can bring to the atmospheric air quality and climate monitoring communities will be included as well.

Convener: Claus Zehner | Co-conveners: Ilse Aben, Pieternel Levelt, Diego Loyola, Rosemary Munro
vPICO presentations
| Wed, 28 Apr, 09:00–12:30 (CEST)
AS3.17 EDI

The composition of the upper troposphere and the stratosphere (UTS) plays a key role in the climate system. Our understanding of the interactions between dynamics, chemistry and climate in this region is rapidly increasing thanks to both observational and modelling studies. In this session we invite studies of dynamical, transport and chemical processes determining the variability at all scales, including long-term trends in the composition of the UTS. We particularly encourage studies bringing together recent in situ and/or remote sensing observations and model simulations.

Convener: Marta AbalosECSECS | Co-conveners: Hella Garny, Johannes Laube, Amanda Maycock, Tanja SchuckECSECS
vPICO presentations
| Wed, 28 Apr, 09:00–12:30 (CEST)
AS3.18

This session invites contributions to address the fundamental metrology needed to underpin long term ambient monitoring of trace gases and aerosols, ensuring coherent and comparable measurements. This includes but is not limited to novel measurement methods or instruments and their metrological validation, development of novel reference materials, the determination and evaluation of uncertainties from sampling, calibrating and modelling, quality control and assurance procedures and instrumental and data comparisons. Monitoring long term spatial and temporal changes in ambient measurements of gaseous compounds and aerosols are essential to establish the scientific links and feedbacks between atmospheric composition, air quality and climate and to ensure legislative compliance. Ambient amount fractions and stable isotope ratios of many trace gases, including the major greenhouse gases (CO2, CH4 and N2O), as well as particle number concentrations and size distributions are routinely observed within networks of monitoring sites and on mobile measurement platforms around the globe. Ensuring the quality and comparability of all these measurement datasets is critical to improve reliability and reduce uncertainty in our understanding of the Earths system.

Convener: Dave Worton | Co-conveners: Paul Brewer, Céline Pascale, Stefan Reimann, Joële Viallon
vPICO presentations
| Tue, 27 Apr, 15:30–17:00 (CEST)
AS3.19

The aim of this general session is to bring together the scientific community within air pollution modelling. The focus is ongoing research, new results and current problems related to the field of modelling the atmospheric transport and transformation on global, regional and local scales.

All presentations covering the research area of air pollution modelling are welcome, including recent model developments, applications and evaluations, physical and chemical parameterisations, process understanding, model testing, evaluation and uncertainty estimates, emissions, numerical methods, model systems and integration, forecasting, event-studies, scenarios, ensembles, assessment, etc.

Convener: Jørgen Brandt | Co-conveners: Nikos DaskalakisECSECS, Ulas Im, Pedro Jimenez-Guerrero, Andrea Pozzer
vPICO presentations
| Wed, 28 Apr, 09:00–15:00 (CEST)
AS3.20

Fine-particle pollution associated with haze threatens the health of more than 1 billion people in China. Extremely high PM2.5 concentrations are frequently observed especially during the winter haze event in northern China. Even after accounting for aerosol-radiation-meteorology feedback and improving the emission inventory, state-of-the-art models still fail to capture the observed high PM2.5 concentrations, suggesting the missing of key chemistry for the secondary aerosol formation. To improve the prediction and control strategy of PM2.5, we are in urgent need of a better understanding of the chemistry of secondary aerosol formation. Thus we propose the session "Multiphase chemistry of secondary aerosol formation under severe haze" to promote the research and discussion on this topic which is highly relevant for both atmospheric chemists and the public.

The session is open for all submissions which addresses, but is not limited to, the following questions concerning secondary aerosol formation: What are the key oxidation pathways leading to aerosol formation under clean and polluted conditions? What is the role of multiphase chemistry versus gas phase chemistry? Are laboratory determined kinetic data of multiphase chemistry directly applicable for ambient conditions and if not, how to derive and determine the reaction kinetics relevant for ambient conditions? What is the aerosol particles’ and droplets’ pH and how does it influence the multiphase chemistry? What is the role of the RH, temperature, mixing state and aerosol phase state in multiphase chemistry and how does aerosol mixing state play a role? What's the contribution of aqueous secondary organic aerosol (SOA) formation under highly polluted conditions?

A special issue of the same topic has already been approved and launched in the EGU journal "Atmospheric Chemistry and Physics".

Convener: Hang Su | Co-conveners: Yafang Cheng, Pingqing Fu, Jingkun Jiang, Nan MaECSECS
vPICO presentations
| Tue, 27 Apr, 09:00–12:30 (CEST)
AS3.21 EDI

The gas-phase oxidation of organic compounds leads to the formation of short-lived organic peroxy radicals and finally to less volatile organic compounds that may condense on aerosol surfaces. During this process also often ozone is produced. One key aspect of the transformation of organic species is the fate of organic peroxy radicals that are formed after the initial attack of the oxidant. This session aims for contributions connecting the gas-phase oxidation of organic compounds with the formation of secondary organic aerosol and ozone pollution. Oxidation agents can be the hydroxyl radical, ozone or the nitrate radical. The focus of contributions should be on the investigation of the gas-phase chemistry leading to secondary pollutants. Contributions can include the development and test of chemical mechanisms from laboratory or chamber experiments or from theory. Also insights from field experiments are welcome.

Convener: Hendrik Fuchs | Co-conveners: Keding Lu, Anna Novelli, Luc Vereecken
vPICO presentations
| Thu, 29 Apr, 15:30–17:00 (CEST)
AS3.22 EDI

The session will cover all aspects of polar stratospheric ozone, other species in the polar regions as well as all aspects of polar stratospheric clouds. Special emphasis is given to results from recent polar campaigns, including observational and model studies.

We encourage contributions on chemistry, microphysics, radiation, dynamics, small and large scale transport phenomena, mesoscale processes and polar-midlatitudinal exchange. In particular, we encourage contributions on ClOx/BrOx chemistry, chlorine activation, NAT nucleation mechanisms and on transport and mixing of processed air to lower latitudes.

We welcome contributions on polar aspects of ozone/climate interactions, including empirical analyses and coupled chemistry/climate model results and coupling between tropospheric climate patterns and high latitude ozone as well as representation of the polar vortex and polar stratospheric ozone loss in global climate models.

We particularly encourage contributions from the polar airborne field campaigns as e.g. the POLSTRACC (Polar Stratosphere in a Changing Climate) and SouthTRAC (Southern Hemisphere - Transport Composition Dynamics) campaign as well as related activities, which aim at providing new scientific knowledge on the Arctic/Antarctic lowermost stratosphere and upper troposphere in a changing climate. Contributions from WMO's Global Atmosphere Watch (GAW) Programme and from the Network for the Detection of Atmospheric Composition Change (NDACC) are also encouraged.

Convener: Farahnaz Khosrawi | Co-conveners: Hideaki Nakajima, Michael Pitts, Ines TritscherECSECS
vPICO presentations
| Mon, 26 Apr, 15:30–17:00 (CEST)
AS3.23 EDI

Reactive halogen species can have an important influence on the chemistry of the troposphere. For instance chlorine atoms react faster with most hydrocarbons than OH does and inorganic bromine and iodine can catalytically destroy tropospheric ozone and oxidise mercury. These reactions have been shown to be important in in environments as different as the polar troposphere during the springtime ozone depletion events, the boundary layer over salt lakes, and volcanic plumes. There is strong evidence that halogens play a spatially even wider role in the marine boundary layer and free troposphere for ozone destruction, changes in the ratios of OH/HO2 and NO/NO2, destruction of methane, in the oxidation of mercury and in the formation of secondary aerosol. There are indications that both, oceanic sources as well as the chemistry of halogens and volatile organic compounds (VOCs) and oxygenated VOCs (OVOCs) in the tropics are linked with potential implications not only for the photochemistry but also the formation of secondary organic aerosol (SOA). Marine emissions of active halogens have been linked to potential impacts on oxidants loading in coastal cities. Finally, bromine and iodine are also being proposed as proxies of past sea ice variability.

We invite contributions in the following areas dealing with tropospheric halogens on local, regional, and global scales:

- Model studies: Investigations of the chemical mechanisms leading to release, transformation and removal of reactive halogen species in the troposphere. Studies of consequences of the presence of reactive halogen species in the troposphere.

- Laboratory studies: Determination of gas- and aqueous-phase rate constants, study of complex reaction systems involving halogens, Henry's law and uptake coefficients, UV/VIS spectra, and other properties of reactive halogen species.

- Field experiments and satellite studies: Measurements of inorganic (X, XO, HOX, XONO2, ..., X = Cl, Br, I) and organic (CH3Br, CHBr3, CH3I, RX, ...) reactive halogen species and their fluxes in the troposphere with in situ and remote sensing techniques.

- Measurements and model studies of the abundance of (reactive) halogen species in volcanic plumes and transformation processes and mechanisms.

- All aspects of tropical tropospheric halogens and links to (O)VOCs: their chemistry, sources and sinks, and their impact on local, regional, and global scales.

Convener: Alfonso Saiz-Lopez | Co-conveners: Nicole Bobrowski, Ulrich Platt, Rolf Sander
vPICO presentations
| Thu, 29 Apr, 14:15–17:00 (CEST)
ITS3.6/GMPV2 EDI

Volcanoes release gas effluents and aerosol particles into the atmosphere during eruptive episodes and by quiescent emissions. Volcanic degassing exerts a dominant role in forcing the timing and nature of volcanic unrest and eruptions. Understanding the exsolution processes of gas species dissolved in magma, and measuring their emissions is crucial to characterise eruptive mechanism and evaluate the sub-sequent impacts on the atmospheric composition, the environment and the biosphere. Emissions range from silent exhalation through soils to astonishing eruptive clouds that release gas and particles into the atmosphere, potentially exerting a strong impact on the Earth’s radiation budget and climate over a range of temporal and spatial scales. Strong explosive volcanic eruptions are a major natural driver of climate variability at interannual to multidecadal time scales. Quiescent passive degassing and smaller-magnitude eruptions on the other hand can impact on regional climate system. Through direct exposure and indirect effects, volcanic emissions may influence local-to-regional air quality and seriously affect the biosphere and environment. Volcanic gases can also present significant hazards to populations downwind of an eruption, in terms of human, animal and plant health, which subsequently can affect livelihoods and cause socio-economic challenges. Gas emissions are measured and monitored via a range of in-situ and remote sensing techniques, to gain insights into both the subterranean-surface processes and quantify the extent of their impacts. In addition, modelling of the subsurface and atmospheric/climatic processes, as well as laboratory experiments, are fundamental to the interpretation of field-based and satellite observations.

This session focuses on the state-of-the-art and interdisciplinary science concerning all aspects of volcanic degassing and impacts of relevance to the Volcanology, Environmental, Atmospheric and Climate sciences (including regional climate), and Hazard assessment. We invite contributions on all aspects of volcanic plumes science, their observation, modelling and impacts. We welcome contributions that address issues around the assessment of hazards and impacts from volcanic degassing both in crises and at persistently degassing volcanoes.

Co-organized by AS3/CL4/NH2
Convener: Pasquale Sellitto | Co-conveners: Amy Donovan, Emily MasonECSECS, Tjarda Roberts, Giuseppe G. Salerno
vPICO presentations
| Wed, 28 Apr, 15:30–17:00 (CEST)
AS3.25 EDI

Volcanic aerosol clouds from major tropical eruptions cause periods of strong surface cooling in the historical climate record and are dominant influences within decadal surface temperature trends.

Even the transition from the unusual 1998-2002 period of a “fully decayed to quiescence” stratospheric aerosol layer, into a more typical period of modest volcanic activity temporarily offset a substantial proportion of the subsequent decadal forcing from increased greenhouse gases.

Advancing our understanding of the influence of volcanoes on climate relies upon better knowledge of (i) the radiative forcings of past eruptions and the microphysical, chemical and dynamical processes which affect the evolution of stratospheric aerosol properties and (ii) the response mechanisms governing post-eruption climate variability and their dependency on the climate state at the time of the eruption. This can only be achieved by combining information from satellite and in-situ observations of recent eruptions, stratospheric aerosol and climate modelling activities, and reconstructions of past volcanic histories and post-eruption climate state from proxies.

In recent years the smoke from intense wildfires in North America and Australia has also been an important component of the stratospheric aerosol layer, the presence of organic aerosol and meteoric particles in background conditions now also firmly established.

This session seeks presentations from research aimed at better understanding the stratospheric aerosol layer, its volcanic perturbations and the associated impacts on climate through the post-industrial period (1750-present) and also those further back in the historical record.

We also welcome contributions to understand the societal impacts of volcanic eruptions and the human responses to them. Contributions addressing volcanic influences on atmospheric composition, such as changes in stratospheric water vapour, ozone and other trace gases are also encouraged.

The session aims to bring together research contributing to several current international co-ordinated activities: SPARC-SSiRC, CMIP6-VolMIP, CMIP6-PMIP, and PAGES-VICS.

Co-organized by CL4/NH2, co-sponsored by SPARC-SSiRC and CMIP6-VolMIP
Convener: Graham Mann | Co-conveners: Myriam Khodri, Claudia Timmreck, Matthew Toohey, Davide Zanchettin
vPICO presentations
| Tue, 27 Apr, 09:00–12:30 (CEST)
CL4.27 EDI

The interactions between aerosols, climate, and weather are among the large uncertainties of current atmospheric research. Mineral dust is an important natural source of aerosol with significant implications on radiation, cloud microphysics, atmospheric chemistry and the carbon cycle via the fertilization of marine and terrestrial ecosystems.

In addition, properties of dust deposited in sediments and ice cores are important (paleo-)climate indicators.

This interdivision session --building bridges between the EGU divisions CL, AS, SSP, BG and GM-- is open to contributions dealing with:

(1) measurements of all aspects of the dust cycle (emission, transport, deposition, size distribution, particle characteristics) with in situ and remote sensing techniques,

(2) numerical simulations of dust on global and regional scales,

(3) meteorological conditions for dust storms, dust transport and deposition,

(4) interactions of dust with clouds and radiation,

(5) influence of dust on atmospheric chemistry,

(6) fertilization of ecosystems through dust deposition,

(7) any study using dust as a (paleo-)climate indicator including sediment archives in loess, ice cores, lake sediments, ocean sediments and dunes.

We especially encourage to submit papers on the integration of different disciplines and/or modelling of past, present and future climates.

In 2021 we look forward to hear three solicited speakers present their latest work.

We are proud to announce:

1) Siyu Chen, professor at Lanzhou University, China.
Siyu will present her work on modelling emission, transport and radiative effects of Asian mineral dust

2) Kevin Ohneiser, PhD student at TROPOS, Leipzig, Germany

Kevin will present his latest findings on aerosols observed during the MOSAIC campaign

3) Jeff Munroe, professor at Middlebury College, USA

Jeff will present his latest findings from the DUST^2 project; a source-to-sink investigation of the modern dust system in SW North America

Share: https://meetingorganizer.copernicus.org/EGU21/session/40684

Co-organized by AS3/BG3/GM8/SSP3, co-sponsored by ISAR
Convener: Jan-Berend Stuut | Co-conveners: Martina KloseECSECS, Joanna Nield, Mingjin TangECSECS
vPICO presentations
| Fri, 30 Apr, 09:00–12:30 (CEST)

AS4 – Interdisciplinary Processes

Programme group scientific officers: Athanasios Nenes, Annica Ekman

ITS4.4/AS4.1 EDI

There are many ways in which machine learning promises to provide insight into the Earth System, and this area of research is developing at a breathtaking pace.
Unsupervised, supervised as well as reinforcement learning are now increasingly used to address Earth system related challenges.
Machine learning could help extract information from numerous Earth System data, such as satellite observations, as well as improve model fidelity through novel parameterisations or speed-ups. This session invites submissions spanning modelling and observational approaches towards providing an overview of the state-of-the-art of the application of these novel methods

Co-organized by CL5.2/ESSI1/NP4
Convener: Julien Brajard | Co-conveners: Peter Düben, Redouane Lguensat, Francine Schevenhoven, Maike SonnewaldECSECS
vPICO presentations
| Fri, 30 Apr, 11:00–17:00 (CEST)
AS4.2

This session invites presentations on simulations of weather and climate models running at high resolution. This includes state-of-the-art storm-resolving simulations (e.g. from the DYAMAND project), high-resolution climate models (e.g. from the PRIMAVERA project) but also large-eddy simulations and high-resolution ocean modelling. Presentations can cover developments to improve model fidelity (e.g. via improved parametrisations), detailed studies of modelled phenomena (e.g. tropical cyclones) but also computational and model development challenges (e.g. the use of GPUs, domain-specific languages or the development of new dynamical cores).

Co-organized by CL5.2/ESSI1/OS4
Convener: Peter Düben | Co-conveners: Daniel Klocke, Florian Ziemen
vPICO presentations
| Thu, 29 Apr, 09:00–11:45 (CEST)
AS4.3 EDI

Several single model large ensemble simulations from Global Climate Models (GCM), Earth System Models (ESM), or Regional Climate Models (RCM), have been generated over the recent years to investigate internal variability and forced changes of the climate system—and to aid the interpretation of the observational record by providing a range of historical climate trajectories that could have been. The increased availability of large ensembles also enables new and inter-disciplinary applications beyond large-scale climate dynamics.

This session invites studies using large GCM, ESM, or RCM ensembles looking at the following topics: 1) Reinterpretation of the observed record in light of internal variability; 2) forced changes in internal variability; 3) development of new approaches to attribute observed events or trends; 4) impacts of natural climate variability; 5) assessment of extreme and compound event occurrence; 6) combining single model large ensembles with CMIP archives for robust decision making; 7) large ensembles as testbeds for method development.

We welcome research across all components of the Earth system, including for example hydrology and biogeochemistry, but also research on the role of internal variability in impact studies focused for example on agriculture, air pollution or energy generation and consumption. We particularly invite studies that apply novel methods or cross-disciplinary approaches to leverage the potential of large ensembles.

Co-organized by CL5.2/HS13
Convener: Raul R. WoodECSECS | Co-conveners: Andrea DittusECSECS, Flavio Lehner, Nicola MaherECSECS, Laura Suarez-GutierrezECSECS
vPICO presentations
| Fri, 30 Apr, 15:30–17:00 (CEST)
NH10.4 EDI

High-impact climate and weather events typically result from the interaction of multiple hazards across various spatial and temporal scales. These events, also known as Compound Events, often cause more severe socio-economic impacts than single-hazard events, rendering traditional univariate extreme event analyses and risk assessment techniques insufficient. It is therefore crucial to develop new methodologies that account for the possible interaction of multiple physical drivers when analysing high-impact events. Such an endeavour requires (i) a deeper understanding of the interplay of mechanisms causing Compound Events and (ii) an evaluation of the performance of climate/weather, statistical and impact models in representing Compound Events.

The European COST Action DAMOCLES coordinates these efforts by building a research network consisting of climate scientists, impact modellers, statisticians, and stakeholders. This session creates a platform for this network and acts as an introduction of the work related to DAMOCLES to the research community.

We invite papers studying all aspects of Compound Events, which might relate to (but are not limited to) the following topics:

Synthesis and Analysis: What are common features for different classes of Compound Events? Which climate variables need to be assessed jointly in order to address related impacts? How much is currently known about the dependence between these variables?
Stakeholders and science-user interface: Which events are most relevant for stakeholders? What are novel approaches to ensure continuous stakeholder engagement?
Impacts: What are the currently available sources of impact data? How can they be used to link observed impacts to climate and weather events?
Statistical approaches, model development and evaluation: What are possible novel statistical models that could be applied in the assessment of Compound Events?
Realistic model simulations of events: What are the physical mechanisms behind different types of Compound Events? What type of interactions result in the joint impact of the hazards that are involved in the event? How do these interactions influence risk assessment analyses?

Co-organized by AS4/CL2/HS13
Convener: Jakob ZscheischlerECSECS | Co-conveners: Freya GarryECSECS, Nina Nadine RidderECSECS, Philip Ward, Seth Westra
vPICO presentations
| Wed, 28 Apr, 15:30–17:00 (CEST)
AS4.5 EDI

Clouds play an important role in the polar climate due to their interaction with atmospheric radiation and their role in the hydrological cycle linking poleward water vapour transport with precipitation, thereby affecting the mass balance of the polar ice sheets. Cloud-radiative feedbacks have also an important influence on sea ice. Cloud and precipitation properties depend strongly on the atmospheric dynamics and moisture sources and transport, as well as on aerosol particles, which can act as cloud condensation and ice nuclei.

This session aims at bringing together researchers using observational and/or modeling approaches (at various scales) to improve our understanding of polar tropospheric clouds, precipitation, and related mechanisms and impacts. Contributions are invited on various relevant processes including (but not limited to):

- Drivers of cloud/precipitation microphysics at high latitudes,
- Sources of cloud nuclei both at local and long range,
- Linkages of polar clouds/precipitation to the moisture sources and transport,

- Relationship of the poleward moisture transport to processes in the tropics and extra-tropics, including extreme transport events (e.g., atmospheric rivers, moisture intrusions),

- Relationship of moisture/cloud/precipitation processes to the atmospheric dynamics, ranging from synoptic and meso-scale processes to teleconnections and climate indices,

- Role of the surface-atmosphere interaction in terms of mass, energy, and cloud nuclei particles (evaporation, precipitation, albedo changes, cloud nuclei sources, etc)
- Impacts that the clouds/precipitation in the Polar Regions have on the polar and global climate system, surface mass and energy balance, sea ice and ecosystems.

Papers including new methodologies specific to polar regions are encouraged, such as (i) improving polar cloud/precipitation parameterizations in atmospheric models, moisture transport events detection and attribution methods specifically in the high latitudes, and (ii) advancing observations of polar clouds and precipitation. We would like to emphasize collaborative observational and modeling activities, such as the Year of Polar Prediction (YOPP), Polar-CORDEX, the (AC)3 project on Arctic Amplification, specific measurement campaigns in the Arctic and Southern Ocean/Antarctica and encourage related contributions.

The session is endorsed by the SCAR Antarctic Clouds and Aerosols Action Group.


Co-organized by CR7/HS13
Convener: Irina V. Gorodetskaya | Co-conveners: Susanne Crewell, Tom Lachlan-Cope, Penny Rowe, Manfred Wendisch
vPICO presentations
| Thu, 29 Apr, 14:15–17:00 (CEST)
HS7.6 EDI

Urban hydrological processes are characterized by high spatial variability and short response times resulting from a high degree of imperviousness. Therefore, urban catchments are especially sensitive to space-time variability of precipitation at small scales. High-resolution precipitation measurements in cities are crucial to properly describe and analyses urban hydrological response. At the same time, urban landscapes pose specific challenges to obtaining representative precipitation and hydrological observations.

This session focuses on high-resolution precipitation and hydrological measurements in cities and on approaches to improve modeling of urban hydrological response, including:
- Novel techniques for high-resolution precipitation measurement in cities and for multi-sensor data merging to improve the representation of urban precipitation fields.
- Novel approaches to hydrological field measurements in cities, including data obtained from citizen observatories.
- Precipitation modeling for urban applications, including convective permitting models and stochastic rainfall generators.
- Novel approaches to modeling urban catchment properties and hydrological response, from physics-based, conceptual and data-driven models to stochastic and statistical conceptualization.
- Applications of measured precipitation fields to urban hydrological models to improve hydrological prediction at different time horizons to ultimately enable improved management of urban drainage systems (including catchment strategy development, flood forecasting and management, real-time control and proactive protection strategies aimed at preventing flooding and pollution).
- Strategies to deal with upcoming challenges, including climate change and rapid urbanization.

Co-organized by AS4/NH1
Convener: Nadav Peleg | Co-conveners: Lotte de VosECSECS, Hannes Müller-Thomy, Susana Ochoa Rodriguez, Li-Pen Wang
vPICO presentations
| Mon, 26 Apr, 13:30–15:00 (CEST)
HS7.1 EDI

Rainfall is a “collective” phenomenon emerging from numerous drops. Understanding the relation between the physics of individual drops and that of a population of drops remains an open challenge, both scientifically and at the level of practical implications. This remains true also for solid precipitation. Hence, it is much needed to better understand small scale spatio-temporal precipitation variability, which is a key driving force of the hydrological response, especially in highly heterogeneous areas (mountains, cities). This hydrological response at the catchment scale is the result of the interplay between the space-time variability of precipitation, the catchment geomorphological / pedological / ecological characteristics and antecedent hydrological conditions. Therefore, (1) accurate measurement and prediction of the spatial and temporal distribution of precipitation over a catchment and (2) the efficient and appropriate description of the catchment properties are important issues in hydrology.

This session will bring together scientists and practitioners who aim to measure and understand precipitation variability from drop scale to catchment scale as well as its hydrological consequences. Contributions addressing one or several of the following topics are especially targeted:
- Novel techniques for measuring liquid and solid precipitation variability at hydrologically relevant space and time scales (from drop to catchment scale), from in situ measurements to remote sensing techniques, and from ground-based devices to spaceborne platforms. Innovative comparison metrics are welcomed;
- Precipitation drop (or particle) size distribution and its small scale variability, including its consequences for precipitation rate retrieval algorithms for radars, commercial microwave links and other remote sensors;
- Novel modelling or characterization tools of precipitation variability from drop scale to catchment scale from various approaches (e.g. scaling, (multi-)fractal, statistic, deterministic, numerical modelling);
- Novel approaches to better identify, understand and simulate the dominant microphysical processes at work in liquid and solid precipitation.
- Applications of measured and/or modelled precipitation fields in catchment hydrological models for the purpose of process understanding or predicting hydrological response.

Co-organized by AS4/NP3
Convener: Auguste Gires | Co-conveners: Alexis Berne, Katharina Lengfeld, Taha Ouarda, Remko Uijlenhoet
vPICO presentations
| Fri, 30 Apr, 09:00–10:30 (CEST)
CL2.17

Weather and Climate Services (WCS) involve the production, translation, delivery, and use of science-based information for decision-making. The production of WCS makes use of long-term climate projections, climate and weather predictions from daily to decadal timescales, historical hydrometeorological data, and sectoral models to predict risks of climate impacts to society. These services are developed and delivered in support of (i) climate-sensitive sectors such as agriculture, management of water resource, health, energy and disaster risk reduction, and (ii) developing countries where the vulnerability to climate change and extreme weather events is high. This session, interdisciplinary in nature, aims at showcasing tools, products and methodologies that could be standardized for an operational and innovative system of WCS delivery in developing countries. The session invites contributions that include a) improvements of models and data analysis for WCS; b) engagement with end-users of WCS; c) assessment of the value of WCS’s outcomes and the corresponding impacts on societies and the environment; d) strategies for broad communication of WCS information to multiple audiences; and e) WCS partnerships between multiple stakeholders such as end-users, NGOs, government ministries, policymakers, and the private sector. The session particularly encourages lessons learned and results from different case studies coming from the global South.

Co-organized by AS4/NH1
Convener: Philippe Roudier | Co-conveners: Roberta Boscolo, Pauline Dibi Kangah, Erik Kolstad, Michael Singer
vPICO presentations
| Wed, 28 Apr, 13:30–14:15 (CEST)
HS7.8 EDI

Hydro-meteorological extremes such as floods, droughts, storms, or heatwaves often affect large regions therefore causing large damages and costs. Hazard and risk assessments, aiming at reducing the negative consequences of such extreme events, are often performed with a focus on one location despite the spatial nature of extreme events. While spatial extremes receive a lot of attention by the media, little is known about their driving factors and it remains challenging to assess their risk by modelling approaches. Key challenges in advancing our understanding of spatial extremes and in developing new modeling approaches include the definition of multivariate events, the quantification of spatial dependence, the dealing with large dimensions, the introduction of flexible dependence structures, the estimation of their probability of occurrence, the identification of potential drivers for spatial dependence, and linking different spatial scales.

This session invites contributions which help to better understand processes governing spatial extremes and/or propose new ways of describing and modeling spatial extremes at different spatial scales.

Target audience: hydrologists, climatologists, statisticians, machine learners, and researchers interested in spatial risk assessments.

Co-organized by AS4/NH1
Convener: Manuela Irene BrunnerECSECS | Co-conveners: András Bárdossy, Philippe Naveau, Simon Michael PapalexiouECSECS, Elena Volpi
vPICO presentations
| Thu, 29 Apr, 14:15–15:00 (CEST)
AS4.10

This joint session invites papers that are related to the mesosphere and lower thermosphere. It addresses the topical fields of the PRESTO (Predictability of the Solar-Terrestrial Coupling) program initiated by SCOSTEP, focusing on the role of the sun and the middle atmosphere/thermosphere/ionosphere in climate and space weather. Contributions studying radiation, chemistry, energy balance, atmospheric tides, planetary waves, gravity waves, neutral-ion coupling, and the interaction of the various processes involved are welcome. This includes work on model data as well as measurements from satellites and ground based platforms such as ALOMAR.

Co-organized by ST3
Convener: Martin Kaufmann | Co-conveners: Franz-Josef Lübken, Peter Preusse
vPICO presentations
| Thu, 29 Apr, 09:00–11:45 (CEST)
BG2.9

Remotely-sensed signals result from the interaction of incoming and emitted electromagnetic radiation with atmospheric constituents, vegetation, soil surfaces or water bodies. Vegetation, soil and water bodies are functional interfaces between terrestrial ecosystems and the atmosphere. These signals can be measured by optical, thermal and microwave remote sensing including the fluorescence parts of the remotely-sensed signal spectrum.
This session solicits for papers presenting strategies, methodologies or approaches leading to the assimilation of remote sensing products from different EM regions, angular constellations, fluorescence as well as data measured in situ for validation purposes.
We welcome contributions on topics related to climate change, food production & security, nature preservation, biodiversity, epidemiology, atmospheric chemistry & pollution (tropospheric ozone, anthropogenic and biogenic aerosols, nitrogen oxides, VOC’s, etc). We also welcome papers focusing on the assimilation of remote sensing and in-situ measurements in bio-geophysical and atmospheric models, as well as the RS extraction techniques themselves.

This session aims to bring together scientists developing remote sensing techniques, products and models leading to strategies with a higher bio-geophysical impact on the stability and sustainability of the Earth’s ecosystems, for the benefit of humanity and its next generations.

Co-organized by AS4
Convener: Willem Verstraeten | Co-convener: Frank Veroustraete
vPICO presentations
| Tue, 27 Apr, 11:00–12:30 (CEST)
ITS2.11/AS4.12

This session is linked to the Pan-Eurasian EXperiment (PEEX; www.atm.helsinki.fi/peex), a multi-disciplinary, -scale and -component climate change, air quality, environment and research infrastructure and capacity building programme. It is aimed at resolving major uncertainties in Earth system science and global sustainability issues concerning the Arctic, Northern Eurasia and China regions. This session aims to bring together researchers interested in (i) understanding environmental changes effecting in pristine and industrialized Pan-Eurasian environments (system understanding); (ii) determining relevant environmental, climatic, and other processes in Arctic-boreal regions (process understanding); (iii) the further development of the long-term, continuous and comprehensive ground-based, air/seaborne research infrastructures together with satellite data (observation component); (iv) to develop new datasets and archives of the continuous, comprehensive data flows in a joint manner (data component); (v) to implement validated and harmonized data products in models of appropriate spatio-temporal scales and topical focus (modeling component); (vi) to evaluate impact on society though assessment, scenarios, services, innovations and new technologies (society component).
List of topics:
• Ground-based and satellite observations and datasets for atmospheric composition in Northern Eurasia and China
• Impacts on environment, ecosystems, human health due to atmospheric transport, dispersion, deposition and chemical transformations of air pollutants in Arctic-boreal regions
• New approaches and methods on measurements and modelling in Arctic conditions;
• Improvements in natural and anthropogenic emission inventories for Arctic-boreal regions
• Physical, chemical and biological processes in a northern context
• Aerosol formation-growth, aerosol-cloud-climate interactions, radiative forcing, feedbacks in Arctic, Siberia, China;
• Short lived pollutants and climate forcers, permafrost, forest fires effects
• Carbon dioxide and methane, ecosystem carbon cycle
• Socio-economical changes in Northern Eurasia and China regions.
PEEX session is co-organized with the Digital Belt and Road Program (DBAR), abstracts welcome on topics:
• Big Earth Data approaches on facilitating synergy between DBAR activities & PEEX multi-disciplinary regime
• Understanding and remote connection of last decades changes of environment over High Asia and Arctic regions, both land and ocean.

Public information:
This session is linked to the Pan-Eurasian EXperiment (PEEX; www.atm.helsinki.fi/peex), a multi-disciplinary, -scale and -component climate change, air quality, environment and research infrastructure and capacity building program. PEEX is aimed at resolving major uncertainties in Earth system science and global sustainability issues concerning the Arctic, Northern Eurasia and China regions. The PEEX - EGU - 2021 session(s) are dedicated in honor of the memory of Prof. Sergej Zilitinkevich.
Co-organized by BG3/CL2/CR7/GI4
Convener: Markku Kulmala | Co-conveners: Alexander Baklanov, Hanna Lappalainen, Sergej Zilitinkevich (deceased)
vPICO presentations
| Thu, 29 Apr, 09:00–12:30 (CEST)
AS4.13 EDI

Ocean-atmosphere flux exchanges of biogeochemically active constituents have significant impacts on global biogeochemistry and climate. Increasing atmospheric deposition of anthropogenically-derived nutrients (e.g., nitrogen, phosphorus, iron) to the ocean influences marine productivity and has associated impacts on oceanic CO2 uptake, and emissions to the atmosphere of climate active species (e.g., nitrous-oxide (N2O), dimethyl-sulfide (DMS), marine organic compounds and halogenated species). Over the past decades, emission reductions for air pollution abatement has also resulted in changes in precipitation, cloud and aerosol chemical composition, and in atmospheric deposition of anthropogenically derived nutrients to the ocean, affecting atmospheric acidity and atmospheric deposition to ecosystems. Atmospheric inputs of other toxic substances (e.g., lead, mercury, cadmium, copper, and persistent organic pollutants) into the ocean are also of concern for their impact on ocean ecosystem health. In turn, oceanic emissions of reactive species and greenhouse gases influence atmospheric chemistry and global climate, and induce potentially important chemistry-climate feedbacks. While advances have been made by laboratory, field, and modelling studies over the past decade, we still lack understanding of many of the physical and biogeochemical processes linking atmospheric acidity, atmospheric deposition, nutrient availability, marine biological productivity, and the biogeochemical cycles governing air-sea fluxes of these climate active species.

This session will address the atmospheric deposition of nutrients and toxic substances to the ocean, their impacts on ocean biogeochemistry, and also the ocean to atmosphere fluxes of climate active species and potential feedbacks to climate. We welcome new findings from measurement programmes (in-situ and remote sensing), process studies, and atmospheric and oceanic numerical models.
This session is jointly sponsored by GESAMP Working Group 38 on ‘The Atmospheric Input of Chemicals to the Ocean’, the Surface Ocean-Lower Atmosphere Study (SOLAS), and the International Commission on Atmospheric Chemistry and Global Pollution (ICACGP).

Co-organized by BG4/OS3, co-sponsored by SOLAS and iCACGP
Convener: Parvadha Suntharalingam | Co-conveners: Robert Duce, Maria Kanakidou, Arvind SinghECSECS, Andreas TilgnerECSECS
vPICO presentations
| Thu, 29 Apr, 13:30–14:15 (CEST)
BG1.1 EDI

Fire is an essential Earth system process that is rapidly changing in response to climate and human land use changes. Climate, vegetation and human activity regulate fire occurrence and spread, but fires also feedback to them in multiple ways. This session welcomes contributions on all aspects of linkages between fire, vegetation, climate, and humans to share recent advances and foster interdisciplinary discussions. We encourage all abstracts that explore the role of fire in the Earth system at any temporal and spatial scale using modeling, field and laboratory observations, and/or remote sensing, with an emphasis on studies that advance our understanding on interactions between fire and (1) weather, climate, and atmospheric chemistry, (2) biogeochemical cycles, land water and energy budgets, and vegetation composition and structure, and (3) human land management (e.g. impact of fire on air and water quality, deforestation, human health, and economy). We also welcome contributions focusing on fire characterization, including (4) fire behavior and emissions (e.g. fire duration, intensity, emission factors, emission height, smoke transport), (5) spatial and temporal changes of fires in the past, present, and future, (6) fire products and models, and their validation and error/bias assessment, and (7) analytical tools designed to enhance situational awareness among fire practitioners and early warning systems.

Public information:
9:00 – 9:05 Intro
9:05 – 9:31 Climate, fire weather & fire management
9:11 Invited: Managing fire to avoid wildfires in fire-prone ecosystems - Isabel Belloni
Schmidt
9:31 – 9:45 Fire impacts on soil, water & air
9:45 – 9:59 Mapping & modeling fire
9:59 – 10:30 Break-out text chats

10:30 – 11:00 Break

11:00 – 11:24 Arctic & boreal fires
11:04 Invited: Intensifying fire regimes in the arctic-boreal zone - Brendan Rogers
11:24 – 11:46 Paleofire
11:46 – 12:30 Break-out text chats
Co-organized by AS4/CL4/NH7
Convener: Sander Veraverbeke | Co-conveners: Niels AndelaECSECS, Angelica Feurdean, Renata Libonati, Fang Li
vPICO presentations
| Mon, 26 Apr, 09:00–12:30 (CEST)
BG2.2 EDI

Stable isotopes and other novel tracers, such as carbonyl sulfide (COS) and clumped isotopes, help to identify and quantify biological, chemical and physical processes that drive Earth's biogeochemical cycling, atmospheric processes and biosphere-atmosphere exchange. Recent developments in analytical measurement techniques now offer the opportunity to investigate these tracers at unprecedented temporal and spatial resolution and precision.

This session includes contributions from field and laboratory experiments, latest instrument developments as well as theoretical and modelling activities that investigate and use the isotope composition of light elements (C, H, O, N) and their compounds as well as other novel tracers for biogeochemical and atmospheric research.

Topics addressed in this session include:
- Stable isotopes in carbon dioxide (CO2), water (H2O), methane (CH4) and nitrous oxide (N2O)
- Novel tracers and biological analogues, such as COS
- Polyisotopocules ("clumped isotopes")
- Intramolecular stable isotope distributions ("isotopomer abundances")
- Analytical, method and modelling developments
- Flux measurements
- Quantification of isotope effects
- Non-mass dependent isotopic fractionation and related isotope anomalies

Co-organized by AS4
Convener: Getachew AdnewECSECS | Co-conveners: Jan Kaiser, Alexander Knohl, Lisa Wingate
vPICO presentations
| Tue, 27 Apr, 09:00–12:30 (CEST)
GI2.2 EDI

The session gathers geoscientific aspects such as dynamics, reactions, and environmental/health consequences of radioactive materials that are massively released accidentally (e.g., Chernobyl and Fukushima nuclear power plant accidents, wide fires, etc.) and by other human activities (e.g., nuclear tests).

The radioactive materials are known as polluting materials that are hazardous for human society, but are also ideal markers in understanding dynamics and physical/chemical/biological reactions chains in the environment. Thus, the radioactive contamination problem is multi-disciplinary. In fact, this topic involves regional and global transport and local reactions of radioactive materials through atmosphere, soil and water system, ocean, and organic and ecosystem, and its relation with human and non-human biota. The topic also involves hazard prediction and nowcast technology.

By combining 35 years (> halftime of Cesium 137) monitoring data after the Chernobyl Accident in 1986, 10 years dense measurement data by the most advanced instrumentation after the Fukushima Accident in 2011, and other events, we can improve our knowledgebase on the environmental behavior of radioactive materials and its environmental/biological impact. This should lead to improved monitoring systems in the future including emergency response systems, acute sampling/measurement methodology, and remediation schemes for any future nuclear accidents.

The following specific topics have traditionally been discussed:
(a) Atmospheric Science (emissions, transport, deposition, pollution);
(b) Hydrology (transport in surface and ground water system, soil-water interactions);
(c) Oceanology (transport, bio-system interaction);
(d) Soil System (transport, chemical interaction, transfer to organic system);
(e) Forestry;
(f) Natural Hazards (warning systems, health risk assessments, geophysical variability);
(g) Measurement Techniques (instrumentation, multipoint data measurements);
(h) Ecosystems (migration/decay of radionuclides).

The session consists of updated observations, new theoretical developments including simulations, and improved methods or tools which could improve observation and prediction capabilities during eventual future nuclear emergencies. New evaluations of existing tools, past nuclear contamination events and other data sets also welcome.

Co-organized by AS4/BG1/GM12/NH8/SSS7
Convener: Daisuke Tsumune | Co-conveners: Nikolaos Evangeliou, Yasunori IgarashiECSECS, Liudmila KolmykovaECSECS, Masatoshi Yamauchi
vPICO presentations
| Mon, 26 Apr, 13:30–17:00 (CEST)
CL2.5 EDI

Predictions of climate from seasonal to decadal time scales and their applications will be discussed in this session. With a time horizon from a few months up to thirty years, such predictions are of major importance to society, and improving them presents an interesting scientific challenge. This session aims to embrace advances in our understanding of the origins of seasonal to decadal predictability, as well as in improving the respective forecast skill and making the most of this information by building and testing new applications and climate services.

The session will cover dynamical as well as statistical predictions (including machine learning methods), and their combination. It will investigate predictions of various climate phenomena, including extremes, from global to regional scales, and from seasonal to multidecadal time scales ("seamless predictions"). Physical processes relevant to long-term predictability sources (e.g. ocean, cryosphere, or land) as well as predicting large-scale atmospheric circulation anomalies associated to teleconnections will be discussed, as will observational and emergent constraints on climate variability and predictability on the seasonal-to-(multi)decadal time scale. Also, the time-dependence of the predictive skill, or windows of opportunity (hindcast period), will be investigated. Analysis of predictions in a multi-model framework, and ensemble forecast initialization and generation, including innovative ensemble approaches to minimize initialization shocks, will be another focus of the session. The session will pay particular attention to innovative methods of quality assessment and verification of climate predictions, including extreme-weather frequencies, post-processing of climate hindcasts and forecasts, and quantification and interpretation of model uncertainty. We particularly invite contributions presenting the use of seasonal-to-decadal predictions for risk assessment, adaptation and further applications.

Co-organized by AS4/HS13/NH1/NP5
Convener: André Düsterhus | Co-conveners: Panos J. Athanasiadis, Leonard BorchertECSECS, Leon Hermanson, Deborah VerfaillieECSECS
vPICO presentations
| Mon, 26 Apr, 09:00–10:30 (CEST)
ITS2.4/SSS2

Citizen science (the involvement of the public in scientific processes) is gaining momentum across multiple disciplines, increasing multi-scale data production on Earth Sciences that is extending the frontiers of knowledge. Successful participatory science enterprises and citizen observatories can potentially be scaled-up in order to contribute to larger policy strategies and actions (e.g. the European Earth Observation monitoring systems), for example to be integrated in GEOSS and Copernicus. Making credible contributions to science can empower citizens to actively participate as citizen stewards in decision making, helping to bridge scientific disciplines and promote vibrant, liveable and sustainable environments for inhabitants across rural and urban localities.
Often, citizen science is seen in the context of Open Science, which is a broad movement embracing Open Data, Open Technology, Open Access, Open Educational Resources, Open Source, Open Methodology, and Open Peer Review. Before 2003, the term Open Access was related only to free access to peer-reviewed literature (e.g., Budapest Open Access Initiative, 2002). In 2003 and during the “Berlin Declaration on Open Access to Knowledge in the Sciences and Humanities”, the definition was considered to have a wider scope that includes raw research data, metadata, source materials, and scholarly multimedia material. Increasingly, access to research data has become a core issue in the advance of science. Both open science and citizen science pose great challenges for researchers to facilitate effective participatory science, yet they are of critical importance to modern research and decision-makers. To support the goals of the various Open Science initiatives, this session looks at what is possible and what is applied in Earth Science.

We want to ask and find answers to the following questions:
Which approaches can be used in Earth Sciences?
What are the biggest challenges in bridging between scientific disciplines and how to overcome them?
What kind of participatory citizen scientist involvement and open science strategies exist?
How to ensure transparency in project results and analyses?
What kind of critical perspectives on the limitations, challenges, and ethical considerations exist?

Co-organized by EOS7/AS4/BG2/CL3.2/HS12
Convener: Taru Sandén | Co-conveners: Tamer Abu-Alam, Lorenzo Bigagli, Noortje Dijkstra, Daniel DörlerECSECS, Dilek FraislECSECS, Florian HeiglECSECS, Leif Longva
vPICO presentations
| Fri, 30 Apr, 11:00–12:30 (CEST)
CL4.7 EDI

The Arctic Realm is changing rapidly and the fate of the cryosphere, including Arctic sea ice, glaciers and ice caps, is a source of concern. Whereas sea ice variations impact the radiative energy budget, thus playing a role in Arctic amplification, the Greenland Ice Sheet retreat contributes to global sea level rise. Moreover, through various processes linking the atmosphere, ice and ocean, the change in the Arctic realm may modify the atmospheric and ocean circulation at regional to global scales, the freshwater budget of the ocean and deep-water formation as well as the marine and terrestrial ecosystems, including productivity. The processes and feedbacks involved operate on all time scales and it require a range of types of information to understand the processes, drivers and feedbacks involved in Arctic changes, as well as the land-ocean-cryosphere interaction. In this session, we invite contributions from a range of disciplines and across time scales, including observational (satellite and instrumental) data, historical data, geological archives and proxy data, model simulations and forecasts, for the past, present and future climate. The common denominator of these studies will be their focus on a better understanding of mechanisms and feedbacks on short to long time scales that drive Arctic and subarctic changes and their impact on climate, ocean and environmental conditions, at regional to global scales, including possible links to weather and climate outside the Arctic.

Co-organized by AS4/CR7/OS1
Convener: Marit-Solveig Seidenkrantz | Co-conveners: Anne de Vernal, Michal Kucera, Henrieka DetlefECSECS, Katrine Elnegaard Hansen
vPICO presentations
| Wed, 28 Apr, 09:00–11:45 (CEST)
NP2.2 EDI

Abstracts are solicited related to the understanding and prediction of weather, climate and geophysical extremes, from both an applied sciences and theoretical viewpoint.

In this session we propose to group together the traditional geophysical sciences and more mathematical/statistical approaches to the study of extremes. We aim to highlight the complementary nature of these two viewpoints, with the aim of gaining a deeper understanding of extreme events.

Potential topics of interest include but are not limited to the following:

· How extremes have varied or are likely to vary under climate change;
· How well climate models capture extreme events;
· Attribution of extreme events;
· Emergent constraints on extremes;
· Linking dynamical systems extremes to geophysical extremes;
· Extremes in dynamical systems;
· Downscaling of weather and climate extremes.
· Linking the dynamics of climate extremes to their impacts

Co-organized by AS4/CL4
Convener: Davide Faranda | Co-conveners: Carmen Alvarez-CastroECSECS, Gabriele Messori
vPICO presentations
| Thu, 29 Apr, 11:00–12:30 (CEST)
GD1.4 EDI

Processes responsible for formation and development of the early Earth (> 2500Ma) are not well understood and strongly debated, reflecting in part the poorly preserved, altered, and incomplete nature of the geological record from this time.
In this session we encourage the presentation of new approaches and models for the development of Earth's early crust and mantle and their methods of interaction. We encourage contributions from the study of the preserved rock archive as well as geodynamic models of crustal and mantle dynamics so as to better understand the genesis and evolution of continental crust and the stabilization of cratons.
We invite abstracts from a large range of disciplines including geodynamics, geology, geochemistry, and petrology but also studies of early atmosphere, biosphere and early life relevant to this period of Earth history.

Co-organized by AS4/BG5/CL1/GMPV3
Convener: Ria Fischer | Co-conveners: Peter A. Cawood, Nicholas Gardiner, Antoine Rozel, Jeroen van Hunen
vPICO presentations
| Mon, 26 Apr, 11:00–12:30 (CEST)
PS2.1 EDI

This session primarily focuses on the neutral atmospheres of terrestrial bodies other than the Earth. This includes not only Venus and Mars, but also exoplanets with comparable envelopes and satellites carrying dense atmospheres such as Titan or exospheres such as Ganymede. We welcome contributions dealing with processes affecting the atmospheres of these bodies, from the surface to the exosphere. We invite abstracts concerning observations, both from Earth or from space, modeling and theoretical studies, or laboratory work. Comparative planetology abstracts will be particularly appreciated.

Co-organized by AS4/ST2
Convener: Arnaud BethECSECS | Co-conveners: Arianna Piccialli, Jan Vatant d'OlloneECSECS
vPICO presentations
| Thu, 29 Apr, 09:00–11:45 (CEST)
GI4.1 EDI

Cosmic rays carry information about space and solar activity, and, once near the Earth, they produce isotopes, influence genetic information, and are extraordinarily sensitive to water. Given the vast spectrum of interactions of cosmic rays with matter in different parts of the Earth and other planets, cosmic-ray research ranges from studies of the solar system to the history of the Earth, and from health and security issues to hydrology and climate change.
Although research on cosmic-ray particles is connected to a variety of disciplines and applications, they all share similar questions and problems regarding the physics of detection, modeling, and the influence of environmental factors.

The session brings together scientists from all fields of research that are related to monitoring and modeling of cosmogenic radiation. It will allow sharing of expertise amongst international researchers as well as showcase recent advancements in their field. The session aims to stimulate discussions about how individual disciplines can share their knowledge and benefit from each other.

We solicit contributions related but not limited to:
- Health, security, and radiation protection: cosmic-ray dosimetry on Earth and its dependence on environmental and atmospheric factors
- Planetary space science: satellite and ground-based neutron and gamma-ray sensors to detect water and soil constituents
- Neutron monitor research: detection of high-energy cosmic-ray variations and its dependence on local, atmospheric, and magnetospheric factors
- Hydrology and climate change: low-energy neutron sensing to measure water in reservoirs at and near the land surface, such as soils, snow pack, and vegetation
- Cosmogenic nuclides: as tracers of atmospheric circulation and mixing; as a tool in archaeology or glaciology for dating of ice and measuring ablation rates; and as a tool for surface exposure dating and measuring rates of surficial geological processes
- Detector design: technological advancements for the detection of cosmic rays
- Cosmic-ray modeling: advances in modeling of the cosmic-ray propagation through the magnetosphere and atmosphere, and their response to the Earth's surface
- Impact modeling: How can cosmic-ray monitoring support environmental models, weather and climate forecasting, irrigation management, and the assessment of natural hazards

Co-organized by AS4/PS4
Convener: Martin SchrönECSECS | Co-conveners: Konstantin HerbstECSECS, Markus KöhliECSECS, W. Rühm, Marek Zreda
vPICO presentations
| Fri, 30 Apr, 16:15–17:00 (CEST)
ST1.2 EDI

The heliosphere is permeated with energetic particles of different compositions, energy spectra and origins. Two major populations of these particles are galactic cosmic rays (GCRs), which originate from outside of the heliosphere and are constantly detected at Earth, and solar energetic particles (SEPs) which are accelerated at/near the Sun during solar flares or by shock fronts associated with the transit of coronal mass ejections. Enhancements in energetic particle fluxes at Earth pose a hazard to humans and technology in space and at high altitudes. Within the magnetosphere, energetic particles are present in the radiation belts, and particle precipitation is responsible for the aurora and for hazards to satellites. Energetic particles have also been shown to cause changes is the chemistry of the middle and upper atmosphere, thermodynamic effects in the upper troposphere and lower stratosphere region, and can influence components of the global electric circuit. This session will aim to address the transport of energetic particles through the heliosphere, their detection at Earth and the effects they have on the terrestrial atmosphere when they arrive. It will bring together scientists from several fields of research in what is now very much an interdisciplinary area. The session will allow sharing of expertise amongst international researchers as well as showcase the recent advances being made in this field, which demonstrate the importance of the study of these energetic particle populations

Co-organized by AS4
Convener: Simon ThomasECSECS | Co-conveners: Nina Dresing, Graeme MarltonECSECS
vPICO presentations
| Mon, 26 Apr, 09:00–10:30 (CEST)

AS5 – Interdisciplinary Methods

Programme group scientific officers: Athanasios Nenes, Annica Ekman

AS5.1 EDI

Instrumentation and its development play a key role in advancing research, providing state-of-the-art tools to address scientific "open questions" and to enable novel fields of research leading to new discoveries.
Over the last several decades, atmospheric environmental monitoring has benefited from the development of novel spectroscopic measurement techniques owing to the significant breakthroughs in photonic technology from the UV to microwave spectral regions. These advances open new research avenues for observation of spatial and long-term trends in key atmospheric precursors, thus improving our understanding of tropospheric chemical processes and trends that affect regional air quality and global climate change. Extensive development of spectroscopic instruments for sensing the atmosphere continues toward improving performance and functionality, and reducing size and cost.
This focus session entitled "Advanced Spectroscopic Measurement Techniques for Atmospheric Science" addresses the latest developments and advances in a broad range of spectroscopic instrumentation and photonic/optoelectronic devices and technologies, and their integration for a variety of atmospheric applications. The objective is to provide a platform for sharing information on state-of-the-art and emerging developments in photonic instrumentation for atmospheric sensing. This interdisciplinary forum aims to foster discussion among experimentalists, atmospheric scientists, and development engineers. It is also an opportunity for R&D and analytical equipment companies to evaluate the capabilities of new instrumentation and techniques.
Topics for presentation include novel spectroscopic methods and instruments for measuring atmospheric aerosols, isotopologues, trace gases, and radicals. In situ and remote observations, vertical concentration profiles, and flux measurements are all welcome. Spectroscopic methods could include high-performance absorption spectroscopy (such as broadband and laser-based cavity-enhanced spectroscopies and multipass systems, and other high-sensitivity spectroscopic methods), fluorescence techniques, heterodyne radiometry, and aerosol spectroscopy. Applications to field observations, airborne platforms (UAV, balloon, aircraft), geological exploration and smog chamber studies are welcome. Creative approaches using new photonic technologies, methodologies, and data analysis tools are particularly encouraged.

Convener: Weidong Chen | Co-conveners: D. Michelle Bailey, Katherine ManfredECSECS, J. Houston Miller, Dean Venables
vPICO presentations
| Fri, 30 Apr, 11:00–12:30 (CEST)
AS5.3 EDI

The Session is dedicated to the memory of Prof. S. Zilitinkevich (13.04.1936 – 15.02.2021)

As the societal impacts of hazardous weather and other environmental pressures grow, the need for integrated predictions which can represent the numerous feedbacks and linkages between physical and chemical atmospheric processes is greater than ever. This has led to development of a new generation of high resolution multi-scale coupled prediction tools to represent the two-way interactions between aerosols, chemical composition, meteorological processes such as radiation and cloud microphysics.
Contributions are invited on different aspects of integrated model and data assimilation development, evaluation and understanding. A number of application areas of new integrated modelling developments are expected to be considered, including:
i) improved numerical weather prediction and chemical weather forecasting with feedbacks between aerosols, chemistry and meteorology,
ii) two-way interactions between atmospheric composition and climate variability.
This session aims to share experience and best practice in integrated prediction, including:
a) strategy and framework for online integrated meteorology-chemistry modelling;
b) progress on design and development of seamless coupled prediction systems;
c) improved parameterisation of weather-composition feedbacks;
d) data assimilation developments;
e) evaluation, validation, and applications of integrated systems.
This Section is organised in cooperation with the Copernicus Atmosphere Monitoring Service (CAMS) and the WMO Global Atmosphere Watch (GAW) Programme.
This year session is dedicated to the Global Air Quality Forecasting and Information Systems (GAFIS) - a new initiative of WMO and several international organizations - to enable and provide science-based air quality forecasting and information services in a globally harmonized and standardized way tailored to the needs of society.

Public information:
The Session is dedicated to the memory of Prof. S. Zilitinkevich (13.04.1936 – 15.02.2021)
Co-sponsored by WMO and CAMS
Convener: Alexander Baklanov | Co-conveners: Johannes Flemming, Georg Grell, Lu RenECSECS
vPICO presentations
| Fri, 30 Apr, 15:30–17:00 (CEST)
NH6.3 EDI

This session is devoted to the analysis of very low/low frequency (VLF/LF) techniques applied to investigate ionospheric disturbances related to natural and technological hazards. Such disturbances lasting from several milliseconds to several days can be used to study natural disasters occurring before, during and after the main event. The capability of the VLF/LF radio waves (3 kHz – 300 kHz) leads the remote sensing of the ionosphere due to the relatively low path attenuation of such frequencies allowing propagation over long distances. The purpose of this session is to provide a forum for discussion among researchers involved in studies of natural hazards like earthquakes, volcano activity, tropical cyclones and lightning, as well as in studies of technological hazards induced by high-energy solar radiation by means of VLF/LF detection system. We encourage contributions on the studies of ionospheric disturbances detected by ground-based networks like International Network for Frontier Research on Earthquake Precursors (INFREP) in Europe, South America VLF NETwork (SAVNET) in South America, World Wide Lightning Location Network (WWLLN) and others. We welcome new methods and techniques applied for the detections and the processing of the VLF/LF signals. Particular attention is given to the comprehension of the physical mechanisms at the origin of precursor signals observed before the natural hazards occurrence.

Co-organized by AS5/ST3
Convener: Giovanni Nico | Co-conveners: Pier Francesco Biagi, Mohammed Y. Boudjada, Aleksandra NinaECSECS
vPICO presentations
| Thu, 29 Apr, 09:45–10:30 (CEST)
NP6.2

Lagrangian trajectories are currently used for a vast range of purposes in ocean and atmosphere sciences. Examples include studying the connectivity of ocean basins, forecasting the spreading of ash clouds, mapping global ocean diffusivities, observing the deep ocean, or tracing plastics and other forms of pollutants in the ocean, etc. There is thus a need for numerical models capable of simulating Lagrangian particles in the ocean and atmosphere as well as accurate methods for analysing the data from surface drifters, floats, and simulated particles.

This session aims at bringing together scientists working on all sorts of Lagrangian methods, e.g. observed or simulated particles in the atmosphere and ocean, and a variety of use cases e.g. studying oceanic mixing/diffusivity, tracing pollution in the atmosphere or ocean, iceberg tracking etc. We welcome presentations on e.g.:

* Connectivity and pathways of air- or water-masses in the atmosphere and the ocean
* Quantifying water mass transformations and fluxes between regions in the ocean
* Development of Lagrangian particle-tracking algorithms and approaches to model particles with active behaviours, e.g. icebergs, fish, ash clouds, plastics etc.
* New methods and tools to analyse observed or simulated Lagrangian particles, e.g. diffusivity, spreading rates, etc.
* New developments in in-situ observations such as balloons, surface drifters or floats.

Co-organized by AS5/CL5.2/OS4
Convener: Joakim Kjellsson | Co-conveners: Sara BerglundECSECS, Kristofer Döös, Bror Jönsson
vPICO presentations
| Fri, 30 Apr, 09:00–12:30 (CEST)
GI4.2 EDI

This session invites contributions on the latest developments and results in lidar remote sensing of the atmosphere, covering • new lidar techniques as well as applications of lidar data for model verification and assimilation, • ground-based, airborne, and space-borne lidar systems, • unique research systems as well as networks of instruments, • lidar observations of aerosols and clouds, thermodynamic parameters and wind, and trace-gases. Atmospheric lidar technologies have shown significant progress in recent years. While, some years ago, there were only a few research systems, mostly quite complex and difficult to operate on a longer-term basis because a team of experts was continuously required for their operation, advancements in laser transmitter and receiver technologies have resulted in much more rugged systems nowadays, many of which are already operated routinely in networks and some even being automated and commercially available. Consequently, also more and more data sets with very high resolution in range and time are becoming available for atmospheric science, which makes it attractive to consider lidar data not only for case studies but also for extended model comparison statistics and data assimilation. Here, ceilometers provide not only information on the cloud bottom height but also profiles of aerosol and cloud backscatter signals. Scanning Doppler lidars extend the data to horizontal and vertical wind profiles. Raman lidars and high-spectral resolution lidars provide more details than ceilometers and measure particle extinction and backscatter coefficients at multiple wavelengths. Other Raman lidars measure water vapor mixing ratio and temperature profiles. Differential absorption lidars give profiles of absolute humidity or other trace gases (like ozone, NOx, SO2, CO2, methane etc.). Depolarization lidars provide information on the shapes of aerosol and cloud particles. In addition to instruments on the ground, lidars are operated from airborne platforms in different altitudes. Even the first space-borne missions are now in orbit while more are currently in preparation. All these aspects of lidar remote sensing in the atmosphere will be part of this session.

Public information:
This session is on the latest developments and results in lidar remote sensing of the atmosphere, covering • new lidar techniques as well as applications of lidar data for model verification and assimilation, • ground-based, airborne, and space-borne lidar systems, • unique research systems as well as networks of instruments, • lidar observations of aerosols and clouds, thermodynamic parameters and wind, and trace-gases. Atmospheric lidar technologies have shown significant progress in recent years. While, some years ago, there were only a few research systems, mostly quite complex and difficult to operate on a longer-term basis because a team of experts was continuously required for their operation, advancements in laser transmitter and receiver technologies have resulted in much more rugged systems nowadays, many of which are already operated routinely in networks and some even being automated and commercially available. Consequently, also more and more data sets with very high resolution in range and time are becoming available for atmospheric science, which makes it attractive to consider lidar data not only for case studies but also for extended model comparison statistics and data assimilation. Here, ceilometers provide not only information on the cloud bottom height but also profiles of aerosol and cloud backscatter signals. Scanning Doppler lidars extend the data to horizontal and vertical wind profiles. Raman lidars and high-spectral resolution lidars provide more details than ceilometers and measure particle extinction and backscatter coefficients at multiple wavelengths. Other Raman lidars measure water vapor mixing ratio and temperature profiles. Differential absorption lidars give profiles of absolute humidity or other trace gases (like ozone, NOx, SO2, CO2, methane etc.). Depolarization lidars provide information on the shapes of aerosol and cloud particles. In addition to instruments on the ground, lidars are operated from airborne platforms in different altitudes. Even the first space-borne missions are now in orbit while more are currently in preparation. All these aspects of lidar remote sensing in the atmosphere will be part of this session.
Co-organized by AS5
Convener: Andreas Behrendt | Co-conveners: Paolo Di Girolamo, Andreas Fix, Michael Sicard, Julien Totems
vPICO presentations
| Tue, 27 Apr, 15:30–17:00 (CEST)
HS1.2.6

Understanding the complex interactions of the coupled terrestrial-atmospheric water cycle requires cross-compartment strategies encompassing coupled modeling from the bedrock to the top of the atmosphere, integrated hydro-meteorological observations and datasets, novel data assimilation schemes and multivariable validation approaches. The objective of the session is to create opportunities for interdisciplinary exchange of ideas and experiences among members of the Earth System and hydrology communities. Contributions are invited dealing with the complex interactions between groundwater, surface water, land surface and atmospheric processes with a specific focus on the development, application and validation of novel one-way (both deterministic and ensemble) or fully-coupled hydrometeorological modeling systems for process understanding and predictions and projections across various space- and time scales. This includes also combined dynamical-statistical approaches and studies addressing data assimilation in coupled models. An additional focus is placed on the use of field experiments and testbeds equipped with complex sensors and measurement systems allowing cross-compartment and multivariable validation of these modeling systems.

Co-organized by AS5
Convener: Harald Kunstmann | Co-conveners: Gabriëlle De Lannoy, Martin Drews, Harrie-Jan Hendricks Franssen, Stefan Kollet, Insa Neuweiler, Alfonso Senatore
vPICO presentations
| Fri, 30 Apr, 15:30–17:00 (CEST)
CL4.18 EDI

The radiation budget of the Earth is a key determinant for the genesis and evolution of climate on our planet and provides the primary energy source for life. Anthropogenic interference with climate occurs first of all through a perturbation of the Earth radiation balance. We invite observational and modelling papers on all aspects of radiation in the climate system. A specific aim of this session is to bring together newly available information on the spatial and temporal variation of radiative and energy fluxes at the surface, within the atmosphere and at the top of atmosphere. This information may be obtained from direct measurements, satellite-derived products, climate modelling as well as process studies. Scales considered may range from local radiation and energy balance studies to continental and global scales. In addition, related studies on the spatial and temporal variation of cloud properties, albedo, water vapour and aerosols, which are essential for our understanding of radiative forcings, feedbacks, and related climate change, are encouraged. Studies focusing on the impact of radiative forcings on the various components of the climate system, such as on the hydrological cycle, on the cryosphere or on the biosphere and related carbon cycle, are also much appreciated.

Solicted speaker: Richard Allan

Co-organized by AS5
Convener: Martin Wild | Co-conveners: Maria Z. HakubaECSECS, Paul Stackhouse, Jörg Trentmann
vPICO presentations
| Wed, 28 Apr, 09:00–11:45 (CEST)
CR7.2 EDI

THIS SESSION IS A MERGE OF 2 SESSIONS. PLEASE CHECK PUBLIC INFORMATION FOR MORE INFORMATION.
BELOW YOU FIND BOTH SESSION DESCRIPTIONS
Coupled modelling in the polar regions
In recent decades, the climate in the polar regions has undergone dramatic changes. Quantifying the individual contributions of Earth system components (cryosphere, ocean, atmosphere, and land) to the observed changes is challenging due to feedback between the components. Examples include (but are not limited to) ice shelf – ocean interactions (through basal melting and cavity geometry evolution) and elevation feedback (through surface mass balance). Hence, studies based on individual components of the Earth System have limited capacity to represent all relevant processes. This session aims to provide a platform for sharing coupled modelling experiences incorporating the cryosphere in the polar regions.
=====
Facilitating remote sensing applications across the terrestrial Arctic
We solicit both technical and scientific contributions from modelling studies in which feedback and emergent properties between the cryosphere and other Earth System components in polar regions are investigated, better understood, and possibly even quantified. In addition to application of coupled modelling to real world domains, contributions are also invited from idealised studies and intercomparisons, such as the Marine Ice Sheet – Ocean Intercomparison Project (MISOMIP).
Environmental changes in terrestrial ecosystems and coastal areas across the Arctic can only be fully addressed by using remote sensing observations and modelling. However, due to the multiscale complexity of the landscape, to limitations related to illumination and atmospheric conditions, bridging the gap between field and satellite observations remains a major challenge. Contributions may include recent advances in instrumentation and methodology for validation and calibration of remote sensing products, applications of joint use of in situ and satellite records to tackle science questions, demonstrate the utility of UAV for bridging the scale gap, progress for standardization (protocols) or reviewing challenges.
We specifically welcome contributions within the framework of T-MOSAiC aiming to coordinate activities that will both aid and benefit from MOSAiC (especially the modelling components) by extending the work to the lands surrounding the Arctic Ocean and to the northern communities.
=====

Public information:
We divide our session time slot into 4 parts:
(5min Introduction)
15:35 - 16:04 Presentations of "Coupled modelling in polar regions" (5min invited talk by Xylar Asay-Davis followed by 2min pitch talks of all authors)
16:04 - 16:16 2min vPICO talks of "Facilitating remote sensing applications across the terrestrial Arctic"
--- from 16:16 on individual text chat discussion with each author are possible in parallel windows ---
16:16 - 16:45 Discussion and open questions: Coupled modelling in the polar regions
16:45 - 17:00 Discussion on the status of T-MOSAIC: The final discussion for the remote sensing section will allow for additional questions (left open after the individual chats) and will specifically focus on the status of T-MOSAIC.
Co-organized by AS5/OS1
Convener: Konstanze HaubnerECSECS | Co-conveners: Annett Bartsch, Rupert Gladstone, Jeffrey KerbyECSECS, Yoshihiro Nakayama, Shuting Yang, Gonçalo Vieira
vPICO presentations
| Wed, 28 Apr, 15:30–17:00 (CEST)
G5.2 EDI

Geodesy contributes to Atmospheric Science by providing some of the ECVs of the GCOS. Water Vapor is under-sampled in the current meteorological and climate observing systems. Obtaining more high-quality humidity observations is essential to weather forecasting and climate monitoring. The production, exploitation and evaluation of operational GNSS-Met for weather forecasting is well established in Europe due to 20+ years of cooperation between the geodetic community and the national met services. Advancements in NWP models to improve forecasting of extreme precipitation require GNSS troposphere products with a higher resolution in space and shorter delivery times than are currently in use. Homogeneously reprocessed GNSS data have high potential for monitoring WV climatic trends and variability. With shortening orbit repeat periods, SAR measurements are a new source of information to improve NWP models. Using NWP data within RT processing of GNSS observations can initialize PPP algorithms, shortening convergence times and improving positioning. GNSS signals can be used for L-band remote sensing when Earth-surface reflected signals are considered. GNSS-R contributes to environmental monitoring with estimates of soil moisture, snow depth, ocean wind speed, sea ice concentration and has the potential to be used to retrieve near-surface WV.
We welcome, but not limit, contributions on:
•Estimates of the neutral atmosphere using ground-based and space-based geodetic data, use of those estimates in weather forecasting and climate monitoring
•Multi-GNSS and multi-instruments approaches to retrieve and inter-compare tropospheric parameters
•RT and reprocessed tropospheric products for now-casting, forecasting and climate
•Assimilation of GNSS tropospheric products in NWP and in climate reanalysis
•Production of SAR-based tropospheric parameters and use of them in NWP
•Methods for homogenization of long-term GNSS tropospheric products
•Studies of the delay properties of the GNSS signals for propagation experiments
•Usage of NWP data in GNSS data processing
•Techniques on retrieval of soil moisture from GNSS observations and of ground-atmosphere boundary interactions
•Estimates and methods using GNSS-R for the detection and characterization of sea level and sea ice changes
•Usage of satellite gravity observations for studying the atmospheric water cycle.
This session is also related to the activities of IAG Inter-Commission Committee on "Geodesy for Climate Research".

Co-organized by AS5
Convener: Rosa Pacione | Co-conveners: Kyriakos BalidakisECSECS, Gert Mulder, Maximilian Semmling, Felicia Norma Teferle, Henrik Vedel
vPICO presentations
| Thu, 29 Apr, 14:15–17:00 (CEST)
GI6.4 EDI

Observations from aircraft, remotely piloted aircraft systems (RPAS/UAV/UAS) and balloons are an important means to obtain a broad view of processes within the Earth environment during measurement campaigns. The range of available instruments enables a broad and flexible range of applications. It includes sensors for meteorological parameters, trace gases and cloud/aerosol particles and more complex systems like high spectral resolution lidar, hyperspectral imaging at wavelengths from the visible to thermal infra-red and synthetic aperture radar. The use of small state-of-the-art instruments, the combination of more and more complex sets of instruments with improved accuracy and data acquisition speed enables more complex campaign strategies even on small aircraft, balloons or RPASs.
Applications include atmospheric parameters, surface properties of vegetation, glaciological processes, sea ice and iceberg studies, soil and minerals and dissolved or suspended matter in inland water and the ocean. Ground based systems and satellites are key information sources to complement airborne datasets and a comprehensive view of the observed system is often obtained by combining all three. Aircraft and balloon operations depend on weather conditions either to obtain the atmospheric phenomenon of interest or the required surface-viewing conditions and so require detailed planning. They cover large areas in the horizontal and vertical with adaptable temporal sampling. Future satellite instruments can be tested using airborne platforms during their development. The validation of operational satellite systems and applications using airborne measurements has come increasingly into focus with the European Copernicus program in recent years.
This session will bring together aircraft, balloon and RPAS operators and the research community to present:
• an overview of the current status of environmental research with a focus on the use of airborne platforms
• recent observation campaigns and their outcomes
• multi-aircraft/balloon/RPAS and multi-RI campaigns
• using airborne and ground-based RI to complement satellite data, including cal/val campaigns
• identifying and closing capability gaps
• contributions of airborne measurements to modelling activities
• airborne platforms to reduce the environmental footprint of alternative observation strategies
• airborne instruments, developments and observations
• future plans involving airborne observational research

Public information:
Observations from aircraft, remotely piloted aircraft systems (RPAS/UAV/UAS) and balloons are an important means to obtain a broad view of processes within the Earth environment during measurement campaigns. The range of available instruments enables a broad and flexible range of applications. It includes sensors for meteorological parameters, trace gases and cloud/aerosol particles and more complex systems like high spectral resolution lidar, hyperspectral imaging at wavelengths from the visible to thermal infra-red and synthetic aperture radar. The use of small state-of-the-art instruments, the combination of more and more complex sets of instruments with improved accuracy and data acquisition speed enables more complex campaign strategies even on small aircraft, balloons or RPASs.
Applications include atmospheric parameters, surface properties of vegetation, glaciological processes, sea ice and iceberg studies, soil and minerals and dissolved or suspended matter in inland water and the ocean. Ground based systems and satellites are key information sources to complement airborne datasets and a comprehensive view of the observed system is often obtained by combining all three. Aircraft and balloon operations depend on weather conditions either to obtain the atmospheric phenomenon of interest or the required surface-viewing conditions and so require detailed planning. They cover large areas in the horizontal and vertical with adaptable temporal sampling. Future satellite instruments can be tested using airborne platforms during their development. The validation of operational satellite systems and applications using airborne measurements has come increasingly into focus with the European Copernicus program in recent years.
Co-organized by AS5/BG2
Convener: Thomas Ruhtz | Co-conveners: Sven Fahrner, Paola Formenti, Felix Friedl-Vallon, Shridhar JawakECSECS
vPICO presentations
| Fri, 30 Apr, 13:30–16:15 (CEST)
NP3.3 EDI

This session aims to foster the development of multifractal methodologies and tools with applications to a wide variety of nonlinear, geophysical systems, including their interactions with urban systems. Theories range from scalar to vector fields, applications range from urban geosciences (e.g., land use patterns, water management and ecosystems) to atmospheric and oceanic turbulence (e.g., wind energy, meso-scale scaling anisotropy) and climate (e.g., across scale evolution of the extremes). Data include in-situ and remotely sensed data, as well as outputs from models.

Co-organized by AS5/HS13
Convener: Ioulia Tchiguirinskaia | Co-conveners: Igor Paz, Arun RamanathanECSECS
vPICO presentations
| Thu, 29 Apr, 11:00–12:30 (CEST)

AS6 – Short Courses

Programme group scientific officers: Athanasios Nenes, Annica Ekman

SC4.12

The climate system as a whole can be viewed as a highly complex thermal/heat engine, in which numerous processes continuously interact to transform heat into work and vice-versa. As any physical system, the climate system obeys the basic laws of thermodynamics, and we may therefore expect the tools of non-equilibrium thermodynamics to be particularly useful in describing and synthesising its properties. The main aim of this short course will be twofold. Part 1 will provide an advanced introduction to the fundamentals of equilibrium and non-equilibrium thermodynamics, irreversible processes and energetics of multicomponent stratified fluids. Part 2 will illustrate the usefulness of this viewpoint to summarize the main features of the climate system in terms of thermodynamic cycles, as well as a diagnostic tool to constrain the behavior of climate models. Although the aim is for this to be a self-contained module, some basic knowledge of the subject would be beneficial to the participants. Registration is not needed, but indication of interest would be helpful for planning purposes.

Public information:
The course will be streamed online in a Zoom webinar format. It will consist of 45 mins talks + 15 mins Q&A session.
We agreed on having the SC live streamed on Zoom through the vEGU platform. As we can dispose of 45 mins plus 15 mins Q&A, we will split ourselves like this:
- The first part, chaired by Remi Tailleux (25 mins), will provide an advanced introduction on the fundamentals of equilibrium and non-equilibrium thermodynamics, irreversible processes and energetics...
- The second part, chaired by Valerio Lembo (10 mins) and Gabriele Messori (5 mins), will illustrate some applications of thermodynamics to the study of the climate system and its general circulation.

Lecture notes and commented slides will be uploaded on the webpage of the course, within the vEGU21 programme, containing an extended version of the topics that will be touched in the short course. They will be on display and available for comments same as the other presentations at vEGU21.
Co-organized by AS6/CL6/CR8/NP9/OS5
Convener: Valerio Lembo | Co-conveners: Gabriele Messori, Remi Tailleux
Fri, 30 Apr, 16:00–17:00 (CEST)
SC2.6 EDI

After the PhD, a new challenge begins: finding a position where you can continue your research or a job outside academia where you can apply your advanced skills. This task is not always easy, and frequently a general overview of the available positions is missing. Furthermore, in some divisions, up to 70% of PhD graduates will go into work outside of academia. There are many different careers which require or benefit from a research background. But often, students and early career scientists struggle to make the transition due to reduced support and networking.
In this panel discussion, scientists with a range of backgrounds give their advice on where to find jobs, how to transition between academia and industry and what are the pros and cons of a career inside and outside of academia.
In the final section of the short course, a Q+A will provide the audience with a chance to ask their questions to the panel. This panel discussion is aimed at early career scientists but anyone with an interest in a change of career will find it useful. An extension of this short course will run in the networking and early career scientist lounge, for further in-depth or one-on-one questions with panel members.

Co-organized by AS6/CL6
Convener: Jenny Turton | Co-conveners: Francesco Giuntoli, Stephen Chuter, Anouk Beniest, Silvio Ferrero
Wed, 21 Apr, 16:00–17:00 (CEST)
SC4.10 EDI

In order to be able to have predictive power on extreme events we need to rely on mathematical approaches that provide us with some degree of universality, so that we have rigorous ways to extrapolate information beyond what has been already recorded. In this short course we will introduce frameworks based on dynamical systems theory and statistical mechanics that allow for a rigorous and effective treatment and analysis of extreme events. We will show how extreme value theory and large deviation theory allows for a better understanding of high-impact weather and climate extremes as well as of the basic dynamical properties of the atmosphere. We will introduce the basic theory and show applications on a range of datasets, including outputs of numerical models of various levels of complexity as well as observational data.

Co-organized by AS6/CL6/NH11/NP9, co-sponsored by AGU
Convener: Valerio Lucarini | Co-conveners: Carmen Alvarez-CastroECSECS, Davide Faranda, Vera Melinda Galfi, Gabriele Messori
Fri, 30 Apr, 09:00–10:00 (CEST)
SC4.9 EDI

Numerical models used for weather and climate prediction have traditionally been formulated in a deterministic manner. In other words, given a particular state of the resolved scale variables, the most likely forcing from sub-grid scale motions and parametrised processes is estimated and used to predict the evolution of the large-scale flow. However, knowledge uncertainties, necessary simplifications in representing the physical processes in numerical models, and the lack of scale-separation in the Earth System mean that this approach is a large source of error in forecasts. Over recent years, an alternative paradigm has developed: the use of stochastic techniques to represent the effects of uncertain small-scale and parametrised processes. Instead of predicting the most likely forcing effect of these processes on the resolved scales, a Monte-Carlo approach is used. Integrations of the numerical model sample possible realisations of the forcing.

Stochastic parametrisations are now the norm in ensemble weather and seasonal forecasts worldwide. By accounting for uncertainty in the forecast due to the limitations of numerical models, stochastic parametrisations improve the reliability of ensemble forecasts. We are now seeing their adaptation for use in climate models, with stochastic parametrisations being developed to represent a wide range of processes in the Earth System, including processes in the atmosphere, oceans, and land surface.

This course will introduce the art and science of stochastic parametrisation, including

> Purpose: model uncertainty, ensemble forecasting, climate applications
> Foundations: stochastic processes
> Theory: how to design a stochastic scheme
> Realisation: the path from a well-designed scheme to an operational implementation in a numerical model

This course is aimed at PhD students, Early Career Scientists, and all those interested in an overview of key concepts in stochastic parametrisation. The course will be taught through a combination of presentations and interactive exercises using python notebooks. No prior knowledge of python is necessary.

Public information:
Due to the reduced length of time allocated to each short course this year, the short course will consist of presentations and Q&A, and will no longer include python exercises.

For further reading on this topic, please find useful references here:
https://mumip.web.ox.ac.uk/stochastic-parametrisation
Co-organized by AS6/NP9/OS5
Convener: Hannah ChristensenECSECS | Co-conveners: Martin Leutbecher, Cecile Penland
Fri, 30 Apr, 16:00–17:00 (CEST)