EGU22-10190, updated on 28 Mar 2022
https://doi.org/10.5194/egusphere-egu22-10190
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Historical Structure From Motion (HSfM): An automated historical aerial photography processing pipeline revealing non-linear and heterogeneous glacier change across Western North America

Friedrich Knuth1, David Shean1, Chistopher McNeil2, Eli Schwat1, and Shashank Bhushan1
Friedrich Knuth et al.
  • 1Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
  • 2United States Geological Survey, Alaska Science Center, Anchorage, AK, USA

Mountain glaciers are responding in concert to a warming global climate over the past century. However, on interannual to decadal time scales, glaciers show temporally non-linear dynamics and spatially heterogeneous response, as a function of regional climate forcing and local geometry. Deriving long-term geodetic glacier change measurements from historical aerial photography can inform efforts to understand and project future response. 

We present interannual to decadal glacier and geomorphic change measurements at multiple sites across Western North America from the 1950s until present. Glacierized study sites differ in terms of glacial geometry and climatology, from continental mountains (e.g., Glacier National Park) to maritime stratovolcanoes (e.g., Mt. Rainier). Quantitative measurements of glacier and land surface change are obtained from Digital Elevation Models (DEMs) generated using the Historical Structure from Motion (HSfM) package. We use scanned historical images from the USGS North American Glacier Aerial Photography (NAGAP) archive and other aerial photography campaigns from the USGS EROS Aerial Photo Single Frames archive. 

The automated HSfM processing pipeline can derive high-resolution (0.5-2.0 m) DEMs and orthomosaics from scanned historical aerial photographs, without manual ground control point selection. We apply a multi-temporal bundle adjustment process using all images for a given site to refine both extrinsic and intrinsic camera model parameters, prior to generating DEMs for each acquisition date. All historical DEMs are co-registered to modern reference DEMs from airborne lidar, commercial satellite stereo or global elevation basemaps. The co-registration routine uses a multi-stage Iterative Closest Point (ICP) approach to achieve high relative alignment accuracy amongst the historical DEMs, regardless of reference DEM source. 

We examine the impact of regional climate forcing on glacier elevation change and dynamics using downscaled climate reanalysis products. By augmenting the record of quantitative glacier elevation change measurements and examining the relationship between climate forcing and heterogeneous glacier response patterns, we aim to improve our understanding of regional glacier mass change across multiple temporal scales, as well as inform management decisions impacting downstream water resources, ecosystem preservation, and geohazard risks.

How to cite: Knuth, F., Shean, D., McNeil, C., Schwat, E., and Bhushan, S.: Historical Structure From Motion (HSfM): An automated historical aerial photography processing pipeline revealing non-linear and heterogeneous glacier change across Western North America, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10190, https://doi.org/10.5194/egusphere-egu22-10190, 2022.

Displays

Display file