EGU22-12200
https://doi.org/10.5194/egusphere-egu22-12200
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Terrain Change Detection with ICESat-2: A Case Study of Central Mountain Range in Taiwan

Pin-Chieh Pan1 and Kuo-Hsin Tseng2
Pin-Chieh Pan and Kuo-Hsin Tseng
  • 1Department of Earth Science, National Central University, Taoyuan City, Taiwan (pinchiehpan@g.ncu.edu.tw)
  • 2Department of Civil Engineering, National Central University, Taoyuan City, Taiwan (khtseng@g.ncu.edu.tw)

Ice, Cloud, and land Elevation Satellite 2 (ICESat-2), part of NASA's Earth Observing System, is a satellite mission for measuring ice sheet elevation as well as land topography. ICESat-2 is equipped with the Advanced Topographic Laser Altimeter System (ATLAS), a spaceborne lidar that provides topography measurements of land surfaces around the globe. This study intends to utilize ICESat-2 ATL03 elevation data to identify the outdated part in Taiwan’s Digital Elevation Model (DEM). Because the update of DEM takes time and is relatively expensive to renew by airborne LiDAR, a screen of elevation change is crucial for planning the flight route. ICESat-2 has not only a dense point cloud of elevation but also a short revisit time for data collection. That is, ICESat-2 may have a chance to provide a reference for the current condition of terrain formation.

In this study, we aim to verify the 20-meter DEM from the Ministry of the Interior, Taiwan, by ICESat-2 elevation data. The goal is to find out the patches that have experienced significant changes in elevation due primarily to landslides. We select a typical landslide hillside in southern Taiwan as an example, and compare the DEM with ICESat-2 ATL03 photon-based heights before and after the occurrence of landslide events. In our preliminary results, the comparison of DEM and ICESat-2 ATL03 heights has a high degree of conformity inaccuracy (within meter level), indicating ICESat-2’s ability for DEM renewal.

How to cite: Pan, P.-C. and Tseng, K.-H.: Terrain Change Detection with ICESat-2: A Case Study of Central Mountain Range in Taiwan, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-12200, https://doi.org/10.5194/egusphere-egu22-12200, 2022.