EGU22-2742
https://doi.org/10.5194/egusphere-egu22-2742
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Assessing the effect of mass withdrawal from a surface quarry on the Mw4.9 Le Teil (France) earthquake triggering

Julie Maury, Théophile Guillon, Hideo Aochi, Behrooz Bazargan, and André Burnol
Julie Maury et al.
  • BRGM, Orléans, France (J.Maury@brgm.fr)

On November 11th 2019, the Le Teil, France earthquake occurred in the vicinity of a quarry. Immediately, the question was raised about the potential triggering of this earthquake by the quarry. However, another potential triggering source is a hydraulic effect related to heavy rainfall (Burnol et al, 2021). That’s why it is important to quantify precisely the mechanical effect of mass withdrawal. Results from different studies (Ampuero et al, technical report CNRS, 2019; De Novellis et al, Comm. Earth Env., 2021) agrees to a Coulomb stress variation of 0.15 to 0.2 MPa. However, these studies are based on Boussinesq solution supposing a homogeneous half-space that maximize the effect of the quarry. Here we used the distinct element method code 3DEC @Itasca in 3D to take advantage of an improved geological model and assess the impact of discontinuities as well as lithology. Our results show the maximum Coulomb stress change of 0.27 MPa at 1.4 km depth, a value of the same order as what is obtained with Boussinesq solution. A comparison between the location of the earthquake (Delouis et al, 2021) and the maximum Coulomb stress is realized. The maximum value is located at the intersection of the Rouviere fault with another local fault highlighting the interaction between these structures. However, the in situ stress field is not well-known, fault parameters are difficult to assess and there is some uncertainty on the volume of extracted material in the 19th century estimated by the quarry owner. Additionally, the presence of marl in the Hauterivian layer suggests it could have an elasto-plastic behavior. A parametric study has been realized to assess the effect on Coulomb stress change of these uncertainties taking plausible values for each parameter. We show that the uncertainty associated with our calculations affect the results within a range of less than 10%.

How to cite: Maury, J., Guillon, T., Aochi, H., Bazargan, B., and Burnol, A.: Assessing the effect of mass withdrawal from a surface quarry on the Mw4.9 Le Teil (France) earthquake triggering, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-2742, https://doi.org/10.5194/egusphere-egu22-2742, 2022.