EGU22-4738, updated on 27 Mar 2022
https://doi.org/10.5194/egusphere-egu22-4738
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Modeling principal stress orientations in the Arabian plate using plate velocities

Santiago Pena Clavijo, Thomas Finkbeiner, and Abdulkader M. Afifi
Santiago Pena Clavijo et al.
  • King Abdullah University of Science and Technology, Physical Science and Engineering Division, ANPERC, Thuwal, Saudi Arabia (santiago.penaclavijo@kaust.edu.sa)

The Arabian Peninsula is part of a small tectonic plate that is characterized by active and appreciable deformations along its boundaries. Knowledge of the present-day in situ stress field in the Arabian plate and its variability is critical for earth science disciplines that require an understanding of geodynamic processes. In addition, it is essential for a range of practical applications that include the production of hydrocarbons and geothermal energy, mine safety, seismic hazard assessment, underground storage of CO2, and more.

This project aims at modeling the stress orientation field in the Arabian Plate using advanced computational tools together with a plate velocity model. We built a three-layer 3D model of the Arabian crust using digital elevation, basement depth, and Moho depth maps. Based on these data, we built a 3D unstructured finite element mesh for the whole Arabian plate, including the offshore area, with finer resolution at critical locations. The latter is a novel approach to this work.  To capture the deformation caused by the water bodies in the Red Sea, Gulf of Aden, and the Arabian Sea areas, we set a hydrostatic boundary condition as a function of bathymetry. Along the Zagros fold and thrust belt, we pinned the plate boundary to capture continental collision. Finally, the partial differential equation of force equilibrium (a linear static analysis) is solved using plate displacements (inferred from plate velocities) as boundary conditions for several displacement conditions.

The modeling results suggest NE-SW SHmax azimuths in northeastern Saudi Arabia and Kuwait while the Dead Sea transform areas show NW-SE to NNW-SSE azimuths, and the rest of the plate is characterized by predominant N-S SHmax azimuth. Due to pinned boundary conditions at the Zagros Mountains, SHmax azimuth changes from N-S at the Red Sea basin to NE-SW at the Zagros fold and thrust belt. We also notice significant stress concentrations in the transition from the Arabian shield to the sedimentary basins in the Eastern parts of the plate. This is in response to associated changes in rock properties. Hence, the simulated stress orientations corroborate the ongoing tectonic process and deepen our understanding of regional and local in situ stress variation drivers as well as the current elastic deformation in the Arabian plate.

How to cite: Pena Clavijo, S., Finkbeiner, T., and Afifi, A. M.: Modeling principal stress orientations in the Arabian plate using plate velocities, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4738, https://doi.org/10.5194/egusphere-egu22-4738, 2022.

Displays

Display file