EGU22-4763
https://doi.org/10.5194/egusphere-egu22-4763
EGU General Assembly 2022
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Using high-resolution topography to solve “periglacial puzzles”: A semi-automated approach to monitor solifluction movement

Marije Harkema1, Jana Eichel1, Wiebe Nijland1, Steven de Jong1, Daniel Draebing1,2, and Teja Kattenborn3
Marije Harkema et al.
  • 1Utrecht University, Physical Geography, Netherlands (m.r.harkema@students.uu.nl)
  • 2University of Bayreuth, Chair of Geomorphology, Germany
  • 3University of Leipzig, Remote Sensing Centre for Earth System Research (RSC4Earth), Germany

Solifluction is the slow downslope movement of soil mass due to freeze-thaw processes. It is widespread on hillslopes in Polar and Alpine regions and contributes substantially to sediment transport. As solifluction lobe movement is in the order of millimeters to centimeters per year, it is tricky to measure with a high spatial and temporal resolution and accuracy. We developed a semi-automated approach to monitor movement of three solifluction lobes with different degrees of vegetation cover along an elevational gradient between 2,170 and 2,567 m in Turtmann Valley, Swiss Alps. Subsequently, we compared movement rates and patterns with environmental factors.

  • For solifluction movement monitoring, we applied a combination of the Phantom 4 Pro Plus and Phantom 4 RTK (Real Time Kinematic) drones, image co-alignment and COSI-CORR (Co-registration of Optically Sensed Images and Correlation) to track movement on orthophotos between 2017 and 2021. This drone data acquisition and co-alignment procedure enable a simple, time-saving field setup without Ground Control Points (GCPs).
  • Our high co-registration accuracy enabled us to detect solifluction movement if it exceeds 5 mm with sparse vegetation cover. Dense vegetation cover limited feature tracking but detected movement rates and patterns still matched previous measurements using classical total station measurements at the lowest, mostly vegetated lobe.
  • In contrast to traditional solifluction monitoring approaches using point measurements, our monitoring approach provides spatially continuous movement estimates across the complete extend of the lobe. Lobe movement rates were highest at the highest elevations between 2,560 and 2,567 m (up to 14.0 cm/yr for single years) and lowest at intermediate elevations between 2,417 and 2,427 m (up to 2.9 cm/yr for single years). We found intermediate movement rates at lowest elevations between 2,170 and 2,185 m (up to 4.9 cm/yr for single years). In general, movement had the highest rates at the solifluction lobes center and the lowest rates at the front of solifluction lobes.
  • We linked observed movement patters to environmental factors possibly controlling solifluction movement, such as geomorphic properties, vegetation species and coverage, soil properties determined from electrical resistivity tomography (ERT), and soil temperature data. The least movement at the lobe front is characterized by coarse material and plant species stabilizing the risers or plant species growing here due to the stable risers. Most movement at the lobe center is characterized by fine material and no vegetation or plant species promoting movement. The soil temperature data further suggests that snow cover reduced freezing rates at solifluction lobes and potentially decreased solifluction movement at the lobe between 2,417 and 2,427 m.

This study is the first to demonstrate the use of drone-based images and a semi-automated method to reach high spatiotemporal resolutions to detect subtle movements of solifluction lobes at timescales of years at sub-centimeter resolution. This provides new insights into solifluction movement and into drivers of and factors controlling solifluction movement and lobe development. Therefore, our semi-automated approach may have a great potential to uncover the fundamental processes to understand solifluction movement.

How to cite: Harkema, M., Eichel, J., Nijland, W., de Jong, S., Draebing, D., and Kattenborn, T.: Using high-resolution topography to solve “periglacial puzzles”: A semi-automated approach to monitor solifluction movement, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4763, https://doi.org/10.5194/egusphere-egu22-4763, 2022.

Displays

Display file