Exploring the control of earthworm cast macro- and micro-scale features on soil organic carbon mineralisation across species and ecological categories

Guillaume Le Mer¹, Nicolas Bottinelli¹, Marie-France Dignac¹, Yvan Capowiez², Pascal Jouquet¹, Arnaud Mazurier³, François Baudin⁴, Laurent Caner³, and Cornelia Rumpel¹

¹Institute of Ecology and Environmental Sciences- Paris (iEES-Paris) UMR CNRS, INRAE, IRD, Sorbonne University, 75005 Paris, France
²INRAE, EMMAH, UMR 1114, Domaine Saint Paul, 84914 Avignon cedex 09, France
³Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, UFR SFA, Poitiers 86073, France
⁴Institut des Sciences de la Terre de Paris (ISTeP), Sorbonne Université, Paris 75005, France

The role of earthworms on biogeochemical carbon cycling is a major knowledge gap resulting from the difficulty of isolating and exploring the effects provided by the diversity of organisms. In this study, we investigated the effect of six earthworm species belonging to three ecological categories on soil organic carbon (SOC) mineralisation. To this end, we produced casts with the six species using subsoil material with low SOC content and miscanthus litter. Cast were subjected to laboratory ageing for 140 days. During this process, we monitored physicochemical parameters, CO₂ emissions and determined the micro-scale organisation of the casts’ particulate organic matter and pores using X-ray tomography.

Our results showed contrasting properties of fresh casts from the 3 main ecological categories, in accordance with the earthworm species’ morphological or behavioral strategies, indicating that those were maintained in artificial environments. However, species-specific changes in cast properties throughout ageing increased intragroup variability among ecological categories. As a result we observed earthworm species-specific evolution of CO₂ mineralisation rates during casts ageing. We found that at least half of the variability in CO₂ emissions was explained by cast microstructural changes, related to the spatial arrangement between particulate organic matter, porosity, and mineral particles. We conclude that earthworm species-specific traits may play a role in organic carbon protection through their impact on microstructural cast properties.