EGU22-6136, updated on 10 Jan 2024
https://doi.org/10.5194/egusphere-egu22-6136
EGU General Assembly 2022
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

New realization for European vertical reference system; a first attempt to include the hydrodynamic leveling data

Yosra Afrasteh1, Cornelis Slobbe1, Martin Verlaan2, Martina Sacher3, Roland Klees1, Henrique Guarneri1, Lennart Keyzer1, Julie Pietrzak1, Mirjam Snellen1, and Firmijn Zijl2
Yosra Afrasteh et al.
  • 1Delft University of Technology, Netherlands (y.afrasteh@tudelft.nl)
  • 2Deltares
  • 3Federal Agency for Cartography and Geodesy (BKG)

A study by Afrasteh et al. (2021) has shown that combining model-based hydrodynamic leveling data with data of the Unified European Leveling Network (UELN) has great potential to improve the quality of the European Vertical Reference Frame (EVRF). In the current study, we made our first attempt to actually include the model-based hydrodynamic leveling data as new observations and compute a new realization for the European Vertical Reference System (EVRS). Please note, at this stage our results are provisional and should not be considered as an official realization for EVRS. For the spirit leveling data, we have used the potential differences from UELN, including the third leveling epoch in Great Britain. To generate the model-based hydrodynamic leveling data, 3D DCSM-FM hydrodynamic model that covers the North-east Atlantic Ocean including the North Sea is used to simulate the mean water level for January 1997 to January 2019. The tide gauges records covering the same period have been collected for the North Sea countries to compute the observed water level time series. The difference between observation- and the model-derived mean water level is used to generate the noise model for the hydrodynamic leveling data. We observe an improvement in the precision of the estimated heights in all coastal countries surrounding the 3D DCSM-FM domain. Moreover, our results show that adding model-based hydrodynamic leveling connections significantly reduces the south-north tilt in Great Britain, comparing the EVRF heights with the EGG2015 geoid model. Such a tilt in the British vertical datum, which is caused by a systematic error in the British leveling observations, has been reported in several studies. Our results show that using the model-based hydrodynamic leveling data could solve this problem in the British spirit leveling-based network and provide a stronger tie between Great Britain and other North Sea countries.

 

Y. Afrasteh, D. C. Slobbe, M. Verlaan, M. Sacher, R. Klees, H. Guarneri, L. Keyzer, J. Pietrzak, M. Snellen, and F. Zijl. The potential impact of hydrodynamic leveling on the quality of the European vertical reference frame. Journal of Geodesy, 95(8), 2021. doi: 10.1007/s00190-021-01543-3.

How to cite: Afrasteh, Y., Slobbe, C., Verlaan, M., Sacher, M., Klees, R., Guarneri, H., Keyzer, L., Pietrzak, J., Snellen, M., and Zijl, F.: New realization for European vertical reference system; a first attempt to include the hydrodynamic leveling data, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-6136, https://doi.org/10.5194/egusphere-egu22-6136, 2022.

Displays

Display file