

EGU22-7354 https://doi.org/10.5194/egusphere-egu22-7354 EGU General Assembly 2022 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

Hybrid-Vlasov simulations of ion velocity distribution functions within Kelvin-Helmholtz vortices

Vertti Tarvus¹, Lucile Turc¹, Hongyang Zhou¹, Giulia Cozzani¹, Urs Ganse¹, Yann Pfau-Kempf¹, Markku Alho¹, Markus Battarbee¹, Maarja Bussov¹, Maxime Dubart¹, Harriet George¹, Maxime Grandin¹, Konstantinos Horaites¹, Talgat Manglayev¹, Konstantinos Papadakis¹, Jonas Suni¹, Ivan Zaitsev¹, and Minna Palmroth^{1,2}

¹Department of Physics, University of Helsinki, Helsinki, Finland ²Finnish Meteorological Institute, Helsinki, Finland

The Kelvin-Helmholtz instability (KHI) is a ubiquitous fluid instability in space plasmas. At the flanks of Earth's magnetopause, the KHI can typically develop during periods of northward interplanetary magnetic field, and it drives the solar wind-magnetosphere mass/energy transfer in the absence of dayside magnetic reconnection. We use local 2D-3V hybrid-Vlasov simulations to study the ion velocity distribution functions (VDFs) associated with the KHI in a magnetopause-like setup. Our results indicate that when the KHI enters the non-linear stage, the ion VDFs in the region perturbed by the instability become increasingly non-Maxwellian. The degree of non-Maxwellianity increases along with the magnitude of the density jump across the KHI boundary. We assess the impact of the non-Maxwellian ion VDFs on the development of the KHI, and compare the simulated VDFs with those observed by the Magnetospheric Multiscale Mission.