EGU22-7754
https://doi.org/10.5194/egusphere-egu22-7754
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

The influence of ice-contact lakes and supraglacial debris on glacier change in High Mountain Asia 

Alex Scoffield1,2, Ann Rowan1, and Andrew Sole1
Alex Scoffield et al.
  • 1University of Sheffield, Department of Geography, Sheffield, United Kingdom
  • 2University of Leeds, School of Geography, Leeds, United Kingdom (gyacs@leeds.ac.uk)

The number and extent of glacial lakes in mountain regions worldwide has increased over recent decades as glaciers have lost mass. These ice-contact lakes modify the dynamic response of glaciers to climate change, presenting a challenge to projecting their future evolution. In High Mountain Asia (HMA) glacial lakes have expanded by more than 45% in the last 30 years. Previous studies have demonstrated the contrasting dynamic evolution of lake- and land-terminating glaciers in the Eastern Himalaya, although it was previously unclear if this was a localised phenomenon. Using existing and manually derived datasets, we observed glacier surface velocity, surface elevation, terminus position and glacial lake area change across HMA’s differing climatic regimes over a twenty-year period (2000–2020) to investigate the dynamic evolution of ~60 lake- and land-terminating glaciers.

 

Our results show that lake-terminating glaciers in the Himalaya, Karakoram and Pamir experienced faster ice flow in the ablation zone, significant surface thinning and extensive terminus recession in comparison to land-terminating glaciers over the same period. The majority of lake-terminating glacier population experienced a glacier-wide increase in velocity during the twenty-year observation period, including 58% of individual glaciers. In comparison, 62% of land-terminating glaciers experienced a decrease in velocity during the same period. This result suggests that lake-induced dynamic changes are occurring irrespective of the regional climatic regime. Our observations also revealed that lake-terminating debris-covered glaciers experienced a greater magnitude of change in velocity, surface elevation and terminus position, than their clean ice counterparts. These results are important for making projections of future glacier change in HMA where many debris-covered glaciers are pre-disposed to the development of terminal lakes in the next few decades.

How to cite: Scoffield, A., Rowan, A., and Sole, A.: The influence of ice-contact lakes and supraglacial debris on glacier change in High Mountain Asia , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7754, https://doi.org/10.5194/egusphere-egu22-7754, 2022.

Displays

Display file