EGU22-8343
https://doi.org/10.5194/egusphere-egu22-8343
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Variations of the Earth magnetic field: From geomagnetic storms to field reversal

Roman Leonhardt
Roman Leonhardt
  • Zentralanstalt für Meteorologie und Geodynamik - Wien, Conrad Observatory, Wien, Austria (roman.leonhardt@zamg.ac.at)

The geomagnetic field, the Earth’s primary barrier against charged particles from the sun, varies on time scales from million years to sub-second fluctuations. In the past decades significant advances in measurement techniques, both ground and space based, paleo- and rock magnetic methods, as well as numerical and analytical simulations, improved our understanding of underlying processes and their consequences on our planet and on our society. Geomagnetic storms, often related to coronal mass ejections on the sun and their interaction with the Earth‘s magnetic field, pose a threat to our modern society as they affect satellites, disturb radio communication, and, in particular, damage power grids and cause electrical blackouts on a massive scale. Ground based measurements, which are used together with satellite data to investigate these events, point towards the occurrence of global scale major storms once every 100 years. When further looking at such observatory data, which is existing for the last few hundred years, it is also striking that the global Earth‘s magnetic field is gradually weakening, by more the 10% in the past 200 years. Paleo- and archeomagnetic investigations are used to extend our observational range into the past in order to clarify the significance and reasons of this field reduction. When looking even further into the past, complete flips of the geomagnetic field are recorded in geological archives like volcanic rocks and sediments. These geomagnetic field reversals, the last one happening about 770kyrs ago, are accompanied by strong reductions of the geomagnetic field strength and complex field behavior on the Earths surface, effects which are sometimes brought into connection with our modern observation of field reduction. This presentation will provide a comprehensive overview about geomagnetic field variations, and the necessity of using long timeseries for interpretation of its current state and future evolution.

How to cite: Leonhardt, R.: Variations of the Earth magnetic field: From geomagnetic storms to field reversal, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8343, https://doi.org/10.5194/egusphere-egu22-8343, 2022.