EGU22-8514
https://doi.org/10.5194/egusphere-egu22-8514
EGU General Assembly 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

A demonstration of CTBTO’s capability to identify the possible source region of the specific case of DPRK announced tests by conducting a sensitivity study using high-resolution ATM 

Anne Tipka, Jolanta Kuśmierczyk-Michulec, Robin Schoemaker, and Martin Kalinowski
Anne Tipka et al.
  • CTBTO Preparatory Commission, Vienna International Centre, Wien, Austria (anne.tipka@ctbto.org)

Detection of radionuclides released from a nuclear explosion is an essential task mandated by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Atmospheric transport modelling (ATM) identifies either possible source regions for relevant radionuclide observations at anomalous concentrations through the so-called International Monitoring System (IMS) or potential stations for measuring releases from known source locations. This is a well-known methodology for connecting sources and receptors of any substance in the atmosphere. The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) currently investigates the potential advantages of using high-resolution ATM. Past announced underground nuclear tests at the Punggye-ri Nuclear Test Site from the Democratic People’s Republic of Korea (DPRK) are used in this study to scale the CTBTO’s capability to identify IMS stations that might detect a hypothetical release. These events are also used to identify the capability to locate Punggye-ri as the possible source location.

A sensitivity study is presented that demonstrates the CTBTO’s capability to identify Punggye-ri as a possible source region for the relevant radionuclide measurements at IMS stations. The aim is to find the best model set-up from varying combinations of meteorological resolution, regional domain set-up, and physical parameterization. Variations in resolution are accomplished by using first the Lagrangian Particle Dispersion Model FLEXPART, which will be driven by meteorological fields from the European Centre for Medium-Range Weather Forecast (ECMWF) with either 0.5° or 0.1° spatial and 1 h temporal resolution; and second, by using a combination of the Weather Research and Forecasting Model (WRF) and FLEXPART-WRF to scale down to 1 km spatial resolution. The potential accuracy increase is evaluated by using metrics from previous ATM challenges.

How to cite: Tipka, A., Kuśmierczyk-Michulec, J., Schoemaker, R., and Kalinowski, M.: A demonstration of CTBTO’s capability to identify the possible source region of the specific case of DPRK announced tests by conducting a sensitivity study using high-resolution ATM , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8514, https://doi.org/10.5194/egusphere-egu22-8514, 2022.

Displays

Display file