EGU22-9690, updated on 10 Jan 2024
https://doi.org/10.5194/egusphere-egu22-9690
EGU General Assembly 2022
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Lesson learnt after long-term (>10 years) correlation analyses between satellite TIR anomalies and earthquakes occurrence performed over Greece, Italy, Japan and Turkey

Valeria Satriano1, Roberto Colonna1, Angelo Corrado1, Alexander Eleftheriou1, Carolina Filizzola2, Nicola Genzano1, Hattori Katsumi3, Mariano Lisi2, Nicola Pergola2, Vallianatos Filippos4, and Valerio Tramutoli1
Valeria Satriano et al.
  • 1University of Basilicata, Potenza, Italy
  • 2National Research Council - Institute of Methodologies for Environmental Analysis, Tito Scalo, PZ, Italy
  • 3Graduate School of Science, Chiba University Yayoi 1-33, Inage, Chiba, 263-8522, Japan
  • 4Institute of Physics of the Earth's Interior and Geohazards, Hellenic Mediterranean University Research Center, Chania, Greece

In the recent years, in order to evaluate the possible spatial-temporal correlation among anomalies in Earth’s thermally emitted InfraRed radiation and earthquakes occurrence, several long-term studies have been performed. Different seismically active areas around the world have been this way investigated by using TIR sensors on board geostationary (e.g. Eleftheriou et al. 2016, Genzano et al., 2020, Genzano et al., 2021, Filizzola et al., 2022) and polar (e.g. Zhang and Meng, 2019) satellites.  Since the study of Filizzola et al. (2004) the better S/N ratio achievable by the geostationary sensors (compared with the polar ones) made this kind of sensors the first choice for this kind of long-term analyses.

In this paper the lesson learnt after 20 years of satellite TIR analyses are critically analyzed in the perspective of the possible inclusion of such anomalies among the parameters usefully contributing to the construction of a multi-parametric system for a time-Dependent Assessment of Seismic Hazard.

The more recent results achieved by applying the RST (Tramutoli et al., 2005, Tramutoli 2007) approach to long-term (>10 years) TIR satellite data collected by the geostationary sensors SEVIRI (on board MSG) - over Greece (Elefteriou et al., 2016), Italy (Genzano et al, 2020) and Turkey (Filizzola et al., 2022) – and  by JAMI and IMAGER (on board MTSAT satellites) over Japan (Genzano et al., 2021) will be also presented and discussed.

References

Eleftheriou, A., C. Filizzola, N. Genzano, T. Lacava, M. Lisi, R. Paciello, N. Pergola, F. Vallianatos, and V. Tramutoli (2016), Long-Term RST Analysis of Anomalous TIR Sequences in Relation with Earthquakes Occurred in Greece in the Period 2004–2013, PAGEOPGH, 173(1), 285–303, doi:10.1007/s00024-015-1116-8.

Filizzola, C., N. Pergola, C. Pietrapertosa, V. Tramutoli (2004), Robust satellite techniques for seismically active areas moni-toring: a sensitivity analysis on September 7, 1999 Athens’s earthquake. Phys. Chem. Earth, 29, 517–527. 10.1016/j.pce.2003.11.019

Filizzola C., A. Corrado, N. Genzano, M. Lisi, N. Pergola, R. Colonna and V. Tramutoli (2022), RST Analysis of Anomalous TIR Sequences in relation with earthquakes occurred in Turkey in the period 2004–2015, Remote Sensing, (accepted).

Genzano, N., C. Filizzola, M. Lisi, N. Pergola, and V. Tramutoli (2020), Toward the development of a multi parametric system for a short-term assessment of the seismic hazard in Italy, Ann. Geophys, 63(5) doi:10.4401/ag-8227.

Genzano, N., C. Filizzola, K. Hattori, N. Pergola, and V. Tramutoli (2021), Statistical correlation analysis between thermal infrared anomalies observed from MTSATs and large earthquakes occurred in Japan (2005–2015). JGR: Solid Earth, 126, e2020JB020108, https://doi.org/10.1029/2020JB020108

Tramutoli, V. (2007), Robust Satellite Techniques (RST) for Natural and Environmental Hazards Monitoring and Mitigation: Theory and Applications, in 2007 International Workshop on the Analysis of Multi-temporal Remote Sensing Images, pp. 1–6, IEEE. doi: 10.1109/MULTITEMP.2007.4293057

Tramutoli, V., V. Cuomo, C. Filizzola, N. Pergola, C. Pietrapertosa (2005), Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (İzmit) earthquake, August 17, 1999. RSE, 96, 409–426. https://doi.org/10.1016/j.rse.2005.04.006

Zhang, Y. and Meng, Q. (2019), A statistical analysis of TIR anomalies extracted by RSTs in relation to an earthquake in the Sichuan area using MODIS LST data, NHESS, 19, 535–549, https://doi.org/10.5194/nhess-19-535-2019, 2019

How to cite: Satriano, V., Colonna, R., Corrado, A., Eleftheriou, A., Filizzola, C., Genzano, N., Katsumi, H., Lisi, M., Pergola, N., Filippos, V., and Tramutoli, V.: Lesson learnt after long-term (>10 years) correlation analyses between satellite TIR anomalies and earthquakes occurrence performed over Greece, Italy, Japan and Turkey, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9690, https://doi.org/10.5194/egusphere-egu22-9690, 2022.