SC5.17

EDI

Changes in temperature in landslide bodies can be the result of external forcing (climatic or geothermal) as well as the consequence of frictional heat dissipation. Understanding and quantifying the mechanical response of geomaterials under thermal forcing can be crucial for predicting the initiation and fate of landslides, and the associated risk. Depending on the scale of interest, different modelling strategies have been developed, spanning from physically-based fully-coupled models accounting for micro-scale behaviours to large-scale geostatistical approaches. This short course aims to offer an overview of these modelling strategies with particular attention to state-of-the-art advances. The session is organized in cooperation with NhET (Natural hazard Early career scientists Team).

Public information:

We will give an overview of selected methods to account for temperature in landslide modelling focusing on:

  1. Elementary volume scale (an advanced, physically-based constitutive model)
  2. Slope scale (empirical approach)
  3. Regional scale (statistical approach).
Co-organized by NH11
Convener: Gianvito ScaringiECSECS | Co-conveners: Luigi LombardoECSECS, Carolina Seguí, Núria Pinyol, Gabriele AmatoECSECS, Giulio Di Toro, Manolis Veveakis
Fri, 27 May, 15:10–16:40 (CEST)
 
Room -2.61/62
Public information:

We will give an overview of selected methods to account for temperature in landslide modelling focusing on:

  1. Elementary volume scale (an advanced, physically-based constitutive model)
  2. Slope scale (empirical approach)
  3. Regional scale (statistical approach).

Session assets

Session materials

Speakers

  • Gianvito Scaringi, Charles University, Czechia
  • Luigi Lombardo, University of Twente, Netherlands